首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of net photosynthesis and translocation, CO2 diffusive resistances, levels of carbohydrates, total protein, chlorophyll, and inorganic phosphate, and ribulose 1,5-diphosphate carboxylase activity were measured in soybean (Glycine max L. Merrill) leaves to ascertain the effect of altered assimilate demand. To increase assimilate demand, the pods, stems, and all but one leaf (the “source leaf”) of potted plants were completely shaded for 6 or 8 days and the responses of the illuminated source leaf were monitored. Rate of net photosynthesis in the source leaf of the shaded plants was found to increase curvilinearly to a maximum on the 8th day. The source leaf of the control plants (no sink shading) maintained a constant photosynthetic rate during this period. Vapor-phase resistance to CO2 diffusion did not vary with treatment, but mesophyll (liquid phase) resistance was significantly lower in the source leaf of the shaded plants.  相似文献   

2.
The effects of source-sink alterations on the translocation patterns to soybean (“Fiskeby V”) pods were studied using a pod leakage technique. The distribution of assimilates from a source leaf using double pulse experiments was followed at the pods at the source node and the node immediately below. Alterations were made by shading, illuminating, or excising two-thirds of the leaf area of the leaf at the node below. In control experiments both pulses exhibited identical time-course patterns at both nodes. Shading the lower leaf during the first half of the experiment and illuminating during the second reduced the distribution of 14C-assimilate to the lower node's pods from the source leaf by approximately 30 to 50% while having no effect at the source node. Illuminating the lower leaf during the first half of the experiment followed by excision of two-thirds of that leaf's area and shading increased the import from the source leaf by 4- to 33-fold relative to the control while reducing the distribution to the source node by up to 40%. The change in distribution pattern took place in less than 30 minutes with no apparent change in the source leaf net photosynthesis or in the rate of movement to the pods. The results indicate that any alterations in the source-sink balance will quickly produce a change in the distribution patterns to the pods.  相似文献   

3.
The growth and phosphate mobilization of control and salt-stressed sesame (Sesamum indicum L.) and pepper (Capsicum annuum L.) plants were examined to ascertain whether or not translocation limits growth of salt-stressed plants. Plants were grown in a complete nutrient solution with and without excess salt. One-half of the control and salt-stressed plants were later transferred to phosphate-free culture solution (“−P” plants). Measurements of growth and phosphate pools in leaves indicated that with or without salinity “−P” plants utilized their phosphate reserves to support growth for a time at rates equaling those of plants supplied with phosphate. The results indicate that mobilization was not limiting for growth of salt-stressed plants.

Defoliation experiments were performed at a developmental stage when the import of assimilates by the youngest expanding leaves could be changed by removing certain source or sink leaves. These experiments also indicated that phloem transport was not limiting for leaf growth on salt-stressed plants.

  相似文献   

4.
The effect of plant status on net assimilation and translocation of "C-labeled assimilates in cacao (Theobroma cacao L.) was evaluated. As plant water potential (ψ) decreased from −0.5 to −1.0 MPa, neither net assimilation nor the rate of label translocation out of the l4CO,-fed leaf were affected, but as iji fell between −1.0 and −1.5 MPa, net assimilation decreased sharply and label retention increased greatly. Translocation out of source leaves was strongly correlated with net assimilation (r =−0.93). Translocation velocity, assessed by detection of labeled assimilates in sink leaves, was sensitive to plant water deficit, and it declined linearly (r = 0.97) throughout the range of leaf water potentials observed. The results may be explained by reduction in the velocity of assimilate movement within the sieve elements, reduction in supply of labeled assimilates from source leaves, reduction in sink strength or diversion of assimilates to sites of storage or utilization.  相似文献   

5.
We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 (14C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant’s own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in 14C import, suggesting strong genetic control of sink–source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more 14C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.  相似文献   

6.
Sucrose (2,5–1000 mmol l–1), labeled with [14C]sucrose, was taken up by the xylem when supplied to one end of a 30-cm-long leaf strip of Zea mays L. cv. Prior. The sugar was loaded into the phloem and transported to the opposite end, which was immersed in diluted Hoagland's nutrient solution. When the Hoagland's solution at the opposite end was replaced by unlabeled sucrose solution of the same molarity as the labeled one, the two solutions met near the middle of the leaf strip, as indicated by radioautographs. In the dark, translocation of 14C-labeled assimilates was always directed away from the site of sucrose application, its distance depending on sugar concentration and translocation time. When sucrose was applied to both ends of the leaf strip, translocation of 14C-labeled assimilates was directed toward the lower sugar concentration. In the light, transport of 14-C-labeled assimilates can be directed (1) toward the morphological base of the leaf strip only (light effect), (2) toward the base and away from the site of sucrose application (light and sucrose effect), or (3) away from the site of sucrose application independent of the (basipetal or acropetal) direction (sucrose effect). The strength of a sink, represented by the darkened half of a leaf strip, can be reduced by applying sucrose (at least 25 mmol l–1) to the darkened end of the leaf strip. However, equimolar sucrose solutions applied to both ends do not affect the strength of the dark sink. Only above 75 mmol l–1 sucrose was the sink effect of the darnened part of the leaf strip reduced. Presumably, increasing the sucrose concentration replenishes the leaf tissue more rapidly, and photosynthates from the illuminated part of the leaf strip are imported to a lesser extent by the dark sink.Supported by Deutsche Forschungsgemeinschaft  相似文献   

7.
The mass transfer rate of 14C-sucrose translocation from sugar beet (Beta vulgaris, L.) leaves was measured over a range of net photosynthesis rates from 0 to 60 milligrams of CO2 decimeters−2 hour−1 under varying conditions of light intensity, CO2 concentration, and O2 concentration. The resulting rate of translocation of labeled photosynthate into total sink tissue was a linear function (slope = 0.18) of the net photosynthesis rate of the source leaf regardless of light intensity (2000, 3700, or 7200 foot-candles), O2 concentration (21% or 1% O2), or CO2 concentration (900 microliters/liter of CO2 to compensation concentration). These data support the theory that the mass transfer rate of translocation under conditions of sufficient sink demand is limited by the net photosynthesis rate or more specifically by sucrose synthesis and this limitation is independent of light intensity per se. The rate of translocation was not saturated even at net photosynthesis rates four times greater than the rate occurring at 300 microliters/liter of CO2, 21% O2, and saturating light intensity.  相似文献   

8.
Maize seedlings were flooded for periods from 1 to 15 days, and the leaves of different ages were then taken to examine photosynthesis, dark respiration, transpiration, chlorophyll content, and some morphometric parameters. The responses of leaves to root submergence essentially depended on the leaf layer and the treatment duration. A short-term flooding (1–24 h) induced primary stress responses in the first leaf. Photosynthesis and respiration in this leaf oscillated around the control levels with amplitudes of ±15–25% and ±40–60%, respectively. After a longer flooding, the CO2 exchange in the second leaf was suppressed, while oxygen uptake was stimulated. In the third leaf, which was formed during submergence, the photosynthetic rate increased and the respiratory activity decreased. The transpiration rate did not change in these leaves for 15 days of flooding. The hypoxic treatment, at its early stages, retarded growth and disturbed the source–sink relations. At later stages the plants adapted to hypoxic environment: the seedling growth was restored, which elevated the demand for assimilates and stimulated photosynthesis. It is concluded that plants overcome negative impact of the root hypoxia at the systemic level.  相似文献   

9.
Effects of increasing sink-source ratio on rate of translocation and net carbon exchange were studied by darkening all but one source leaf of Beta vulgaris L. or one primary leaf of Phaseolus vulgaris L. Rates of export of labeled material and patterns of its distribution among sinks were studied by means of GM detectors. Changes in export and import rates were compared with adjustments in starch, sucrose, and glucose levels in sugar beet source leaves before and during treatment.  相似文献   

10.
The quantitative significance of reserves and current assimilates in regrowing tillers of severely defoliated plants of perennial ryegrass (Lolium perenne L.) was assessed by a new approach, comprising 13C/12C and 15N/14N steady-state labeling and separation of sink and source zones. The functionally distinct zones showed large differences in the kinetics of currently assimilated C and N. These are interpreted in terms of ”substrate” and ”tissue” flux among zones and C and N turnover within zones. Tillers refoliated rapidly, although C and N supply was initially decreased. Rapid refoliation was associated with (a) transient depletion of water-soluble carbohydrates and dilution of structural biomass in the immature zone of expanding leaves, (b) rapid transition to current assimilation-derived growth, and (c) rapid reestablishment of a balanced C:N ratio in growth substrate. This balance (C:N, approximately 8.9 [w/w] in new biomass) indicated coregulation of growth by C and N supply and resulted from complementary fluxes of reserve- and current assimilation-derived C and N. Reserves were the dominant N source until approximately 3 d after defoliation. Amino-C constituted approximately 60% of the net influx of reserve C during the first 2 d. Carbohydrate reserves were an insignificant source of C for tiller growth after d 1. We discuss the physiological mechanisms contributing to defoliation tolerance.  相似文献   

11.
Effect of assimilate utilization on photosynthetic rate in wheat   总被引:7,自引:0,他引:7  
Summary Two weeks after anthesis, when the grain is filling rapidly, the rate of photosynthesis by flag leaves of wheat cv. Gabo was between 20 and 30 mg CO2 dm-2 leaf surface hour-1 under the conditions used. About 45% of flag-leaf assimilates were translocated to the ear, and only about 12% to the roots and young shoots.On removing the ear, net photosynthesis by the flag leaves was reduced by about 50% within 3–15 hours, and there was a marked reduction in the outflow of 14C-labelled assimilates from the flag leaves.Subsequent darkening of all other leaves on plants without ears led to recovery of flag-leaf photosynthesis, as measured by gas analysis and 14CO2 fixation, and to increased translocation of assimilates to the roots and young shoots. Minor changes in the rates of dark respiration accompanied these major, reversible changes in photosynthetic rate.After more than a week in continuous, high-intensity light, the rate of photosynthesis by flag leaves of intact plants had fallen considerably, but could be restored again by a period in darkness, or by inhibiting photosynthesis in the ears by spraying them with DCMU. The inhibition of ear photosynthesis increased translocation of labelled assimilates from the flag leaf to the ears, without affecting leaf sugar levels.The application of TIBA to the culm below the ear inhibited auxin movement throught the culm, but had no influence on flag-leaf photosynthesis.These results suggest that, at least in this system, photosynthesis by the flag leaf is regulated directly by the demand for assimilates from the flag leaf and not indirectly through action in the leaf of auxins produced by the sink organs.  相似文献   

12.
Light (about 3,000 foot-candles) neither increased nor decreased the sink strength of young, rapidly expanding leaves of Phaseolus vulgaris L. cv. Black Valentine, as measured by the comparative rates of import of 14C-labeled photosynthates by sink leaves in the light versus dark in short term experiments. Although irradiated sink leaves accumulated more 14C activity, the difference was fully accounted for by photosynthetic reabsorption of respiratory CO2 derived from substrates translocated to the sink leaves.

Maximum sink strength was attained when the sink leaf reached 7 to 8 cm2 in area (9 to 10% of its fully expanded size). Thereafter sink strength declined rapidly and asymptotically to a near zero value at about 45% final area. During this period, however, the rapid decline in translocation was offset by a rapid rise in the photosynthetic rate of the sink leaf, maintaining a near constant relative rate of dry weight increase until the sink leaf had expanded to about 17% of its final area. Although the increasing photosynthetic capacity was associated with a decreasing import capacity, suggesting that the rate of translocation to the sink leaf was controlled by the developing capacity of the sink leaf for photosynthesis, it was not possible to vary the total (true) translocation rate to the sink leaf by varying the photosynthetic rate of the sink leaf in short term light-dark experiments. Despite a high ratio of source to sink in these experiments, no evidence accrued that translocation into young bean leaves was ever sink-limited.

  相似文献   

13.
Large pH gradients between the sources and the sinks involved in translocation of metabolites arise owing to photosynthesis and nitrate reduction in the leaves and respiration in the sinks. pH equalization between the sinks and the sources is proposed to be brought about by a rapid movement of H+ from sinks to sources along the negatively charged surfaces lining the translocation pathways and the ray symplast. This movement is made possible by a charge-compensating movement of K+ in the electrical double layer. In the sieve tubes and specially at the sieve plate pores the movement of K+ in the diffused layer is suggested as the driving force for translocation of metabolites. In the transport network of plants K+ moves in loops, acting like a conveyor belt in the phloem. The proposed mechanism explains all experimental observations related to translocation and also solves the problem of pH-stating in the source and sink cells. Its implications for shoot-root cooperation have been also indicated.  相似文献   

14.
Inhomogeneous photosynthetic activity has been reported to occur in drought-stressed leaves. In addition, it has been suggested that these water stress-induced nonuniformities in photosynthesis are caused by “patchy” stomatal closure and that the phenomenon may have created the illusion of a nonstomatal component to the inhibition of photosynthesis. Because these earlier studies were performed with nonacclimated growth chamber-grown plants, we sought to determine whether such “patches” existed in drought-treated, field-grown plants or in chamber-grown plants that had been acclimated to low leaf water potentials (ψleaf). Cotton (Gossypium hirsutum L.) was grown in the field and subjected to drought by withholding irrigation and rain from 24 d after planting. The distribution of photosynthesis, which may reflect the stomatal aperture distribution in a heterobaric species such as cotton, was assayed by autoradiography after briefly exposing attached leaves of field-grown plants to 14CO2. A homogeneous distribution of radioactive photosynthate was evident even at the lowest ψleaf of −1.34 MPa. “Patchiness” could, however, be induced by uprooting the plant and allowing the shoot to air dry for 6 to 8 min. In parallel studies, growth chamber-grown plants were acclimated to drought by withholding irrigation for three 5-d drought cycles interspersed with irrigation. This drought acclimation lowered the ψleaf value at which control rates of photosynthesis could be sustained by approximately 0.7 MPa and was accompanied by a similar decline in the ψleaf at which patchiness first appeared. Photosynthetic inhomogeneities in chamber-grown plants that were visible during moderate water stress and ambient levels of CO2 could be largely removed with elevated CO2 levels (3000 μL L−1), suggesting that they were stomatal in nature. However, advanced dehydration (less than approximately 2.0 MPa) resulted in “patches” that could not be so removed and were probably caused by nonstomatal factors. The demonstration that patches do not exist in drought-treated, field-grown cotton and that the presence of patches in chamber-grown plants can be altered by treatments that cause an acclimation of photosynthesis leads us to conclude that spatial heterogeneities in photosynthesis probably do not occur frequently under natural drought conditions.  相似文献   

15.
To clarify the entire carbon balance of a young tomato plant and the contribution of each leaf to sink growth, the carbon balance of each leaf was quantitatively measured using the 14CO2 steady-state feeding method to quantitatively measure the photosynthesis, translocation, distribution and respiration of newly fixed 14C. The entire carbon balance of the whole plant was calculated by adding the data of each leaf. The total amount of carbon fixed by all source leaves was 70.2 mg. Of this amount, in a 24-h period, 29% was accumulated in the sinks, 28% remained in the source leaves and 42% was respired. Of the total amount of carbon accumulated in the sinks, the proportion accumulated in the shoot apex, stem and roots were 27, 40 and 29%, respectively. The third and fourth leaves contributed about 30–40% of the total growth of the main sinks. The distribution pattern of each leaf to the shoot apex of the plant was greatest in the first leaf and decreased with decreasing leaf age, whereas it showed an opposite trend in the roots.  相似文献   

16.
Huber SC  Hanson KR 《Plant physiology》1992,99(4):1449-1454
We have further characterized the photosynthetic carbohydrate metabolism and growth of a starchless mutant (NS 458) of Nicotiana sylvestris that is deficient in plastid phosphoglucomutase (Hanson KR, McHale NA [1988] Plant Physiol 88: 838-844). In general, the mutant had only slightly lower rates of photosynthesis under ambient conditions than the wild type. However, accumulation of soluble sugars (primarily hexose sugars) in source leaves of the mutant compensated for only about half of the carbon stored as starch in the wild type. Therefore, the export rate was slightly higher in the mutant relative to the wild type. Starch in the wild type and soluble sugars in the mutant were used to support plant growth at night. Growth of the mutant was progressively restricted, relative to wild type, when plants were grown under shortened photoperiods. When grown under short days, leaf expansion of the mutant was greater during the day, but was restricted at night relative to wild-type leaves, which expanded primarily at night. We postulate that restricted growth of the mutant on short days is the result of several factors, including slightly lower net photosynthesis and inability to synthesize starch in both source and sink tissues for use at night. In short-term experiments, increased “sink demand” on a source leaf (by shading all other source leaves) had no immediate effect on starch accumulation during the photoperiod in the wild type or on soluble sugar accumulation in the mutant. These results would be consistent with a transport limitation in N. sylvestris such that not all of the additional carbon flux into sucrose in the mutant can be exported from the leaf. Consequently, the mutant accumulates hexose sugars during the photoperiod, apparently as the result of sucrose hydrolysis within the vacuole by acid invertase.  相似文献   

17.
Fisher DB 《Plant physiology》1970,45(2):119-125
Based largely on data from soybean, some mathematical models are derived to describe the transport kinetics of 14C-photosynthate. The effects of leaf size, leaf shape, and translocation velocity on the rate of tracer efflux from the leaf are considered, and it is shown that the duration of these effects will approximate the time required for tracer to reach the petiole from the farthest point of the leaf. This duration is designated as the “kinetic size” of the leaf. Although its effect will be slight in the case of soybean (about 2 to 3 minutes), a considerable effect of the kinetic size will be found in the case of large leaves, or when the translocation velocity is low.  相似文献   

18.
The source-sink relations in grapevine (Vitis vinifera L., var. Rkatsiteli) plants were disturbed by defoliation at different stages of vegetative growth in order to investigate changes in photosynthetic activity and assimilate partitioning. Defoliation was shown to stimulate photosynthesis in the remaining source leaves, enhance the assimilate export, and diminish the midday suppression of photosynthesis. Defoliation created a powerful sink for assimilates, and stimulated their delivery to the affected zone. It is hypothesized that defoliation-induced stress is accompanied by a substantial enhancement of photosynthetic activity and by redistribution of assimilate flows, which enables a sustained supply of assimilates to the sink organs of grapevine plants.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 507–512.Original Russian Text Copyright © 2005 by Chanishvili, Badridze, Barblishvili, Dolidze.  相似文献   

19.
To determine the selectivity of movement of amino acids from source leaves to sink tissues in soybeans (Glycine max [L.] Merr. `Wells'), 14C-labeled serine, leucine, or lysine was applied to an abraded spot on a fully expanded trifoliolate leaflet, and an immature sink leaf three nodes above was monitored with a GM tube for arrival of radioactivity. Comparisons were made with 14C-sucrose and 14CO2 assimilates. Radioactivity was detected in the sink leaf for all compounds applied to the source leaflet. A heat girdle at the source leaf petiole essentially blocked movement of applied compounds, suggesting phloem transport. Transport velocities were similar (ranged from 0.75 to 1.06 cm/min), but mass transfer rates for sucrose were much higher than those for amino acids. Hence, the quantity of amino acids entering the phloem was much smaller than that of sucrose. Extraction of source, path, and sink tissues at the conclusion of the experiments revealed that 80 to 90% of the radioactivity remained in the source leaflet. Serine was partially metabolized in the transport path, whereas lysine and leucine were not. Although serine is found in greater quantities than leucine and lysine in the source leaf and path of soybeans, applied leucine and lysine were transported at comparable velocities and in only slightly lower quantities than was applied serine. Thus, no selective barrier against entry of these amino acids into the phloem exists.  相似文献   

20.
The fixation, utilization, and translocation of carbon and thenet import and export of phosphorus by three leaves of Cucumissativus over the course of their lives were measured in a controlledenvironment. The rate of photosynthesis of a leaf followed a regular dailypattern, rising to a maximum during the first 2 hrs. of thelight period and subsequently falling. Dark respiration wasusually highest at the beginning of the dark period and fellthroughout it. The daily rate of photosynthesis per unit areaof a leaf fell during its later life partly as a result of shadingby upper leaves and also because of an independent age factor.The rate of dark respiration per unit area was high in veryyoung leaves but fell rapidly with age. The amount of phosphorus in each leaf reached a maximum beforethe leaf had reached its maximum dry weight. There was thensubstantial net loss of phosphorus from the leaf. The changing function of each leaf as a sink or source of carbohydrateand mineral nutrients was determined. Four stages were recognized:(1) early development from inception until some time after unfolding,when the leaf was dependent upon imported carbohydate; (2) aperiod of rapid expansion, associated with a high rate of uptakeor mineral nutrients, during which translocation of assimilatedcarbon from the leaf was most rapid; (3) a time of decliningrates of growth, photosynthesis and export of carbon, associatedwith substantial loss of phosphorus; (4) finally, a short sensescentphase with net loss of CO2, terminating in the death of theleaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号