首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The optimization of electroporation conditions for maximal uptake of DNA during direct gene transfer experiments is critical to achieve high levels of gene expression in transformed plant cells. Two stains, trypan blue and fluorescein diacetate, have been applied to optimize electroporation conditions for three plant cell types, using different square wave and exponential wave electroporation devices. The different cell types included protoplasts from tobacco, a stable mixotrophic suspension cell culture from soybean with intact cell walls, and germinating pollen from alfalfa and tobacco. Successful electroporation of each of these cell types was obtained, even in the presence of an intact cell wall when conditions were optimized for the electroporation pulse. The optimal field strength for each of these cells differs, protoplasts having the lowest optimal pulse field strength, followed by suspension cells and finally germinating pollen requiring the strongest electroporation pulse. A rapid procedure is described for optimizing electroporation parameters using different types of cells from different plant sources.  相似文献   

2.
3.
An experiment using plant protoplasts has been accepted for the IML-1 mission to be flown on a space shuttle in 1991. Preparatory experiments include studies of cell wall formation, cell division, the effect of simulated weightlessness using fast and slow rotating clinostats, and the development and testing of hardware for the IML-1 mission. After 24 h at 25°C, protoplasts isolated from hypocotyls or leaves of rapeseed seedlings, or from carrot suspension cells, show 60, 20 and 15% cell wall formation, respectively. The time course of formation of the cell wall and cell division could be delayed by treatment at low temperatures or immobilization in alginate or agarose. This aspect is of importance in connection with problems of late access to the space shuttle before launch. At 4°C only 18% of the rapeseed hypocotyl protoplasts had formed cell walls after 24 h. Protoplasts immobilised in agarose or alginate gradually regain their cell division capacity and after 72 h the frequencies are 51 and 26%, respectively, compared to non-immobilised control protoplasts. A significant decrease in cell division activity is observed after rotation for 6 h on the slow clinostat. A similar effect is not observed on the fast clinostat. Protoplasts, cultured in the specially designed plant chamber for up to 14 days established cell aggregates which have further developed into plants.  相似文献   

4.
Actively-growing cultured cells of Pogonatum and Polytrichum were desiccated and cryopreserved. Although Pogonatum was slightly more tolerant to desiccation, both species were cryopreserved with >90% survival rate. An examination of isolated protoplasts revealed that differences in desiccation tolerance were likely dependent on levels of injury of plasma membranes. Trehalose and sucrose provided some protective effects during protoplast desiccation, but mannitol and glucose were less effective when Pogonatum protoplasts were directly desiccated and preserved at various temperatures. The effectiveness of glucose was enhanced when combined with culture medium components.  相似文献   

5.
A device for cultivation of plant and animal cells   总被引:1,自引:0,他引:1  
Summary A device is described for cultivation of suspension cultures of plant and animal cells in plastic bags placed on carrier plates in a thermostat box. Pendular motion of these plates ensures mixing of the fluid and aids in transfer of oxygen pumped above the fluid surface.  相似文献   

6.
Indirect immunofluorescence has been used to study the function of cytoplasmic microtubules in controlling the shape of elongated carrot cells in culture. Using a purified wall-degrading preparation, the elongated cells are converted to spherical protoplasts and the transverse hoops of bundled microtubules are disorganised but not depolymerised in the process. Since microtubules remain attached to fragments of protoplast membrane adhering to coverslips and are still seen to be organised laterally in bundles, it would appear that re-orientation of the transverse bundles is due to loss of cell wall and not to the cleavage of microtubule bridges. After 24 h treatment in 10-3 M colchicine, microtubules are depolymerised in elongated cells but, at this time, the cells retain their elongated shape. This suggests that wall which was organised in the presence of transverse microtubule bundles can retain asymmetric shape for short periods in the absence of those tubules. However, after longer periods of time the cells become spherical in colchicine. Neither wall nor tubules therefore exert individual control on continued cellular elongation and so we emphasize the fundamental nature of wall/microtubule interactions in shape control. It is concluded that the observations are best explained by a model in which hooped bundles of microtubules—which are directly or indirectly associated with molecules involved with cellulose biosynthesis at the cell surface—act as an essential template or scaffolding for the orientated deposition of cellulose.  相似文献   

7.
The use of antibiotics in the culture of non-sterile plant protoplasts   总被引:1,自引:0,他引:1  
J. W. Watts  Janet M. King 《Planta》1973,113(3):271-277
Summary The use of antibiotics to control infections in cultures of protoplasts of leaf mesophyll cells has been examined. The antifungal agents nystatin and amphotericin B were non-toxic to protoplasts at concentrations that controlled fungal growth (25 units and 2.5 g/ml respectively). Of the antibacterial agents examined, only carbenicillin and, to a lesser extent, gentamicin were active against the bacteria usually encountered whilst still permitting normal protoplast metabolism and regeneration. The most satisfactory control of contaminating microorganisms was obtained with a combination of nystatin (25 units/ml) or amphotericin B (2.5 g/ml) and carbenicillin (250 g/ml).  相似文献   

8.
9.
The current status of electromanipulation, that is, electrofusion and electroporation, of plant protoplasts is reviewed. Parameters for electromanipulation as well as their practical implications are discussed. Some comparisons with the use of polyethylene glycol are made and the advantages of electromanipulation are considered.  相似文献   

10.
An electric circuit for plant protoplast manipulation is described. The circuit used readily available materials and was designed for use in teaching. This integrated circuit can be placed in a single small box with controls for the aligning voltage, the aligning frequency, the pulse voltage, and the pulse timing. The circuit can be supplied by any suitable source of dc power and can be easily altered for individual requirements. The circuit, as presented here, can be assembled for less than $250.  相似文献   

11.
Summary Protoplasts of Solanum nigrum and Petunia hybrida have been treated with lethal doses of different inhibitors irreversibly affecting cell metabolism. Survival was expected in fusion products by complementation of the inhibited enzymes. After fusion, three protoplasts survived, formed cell walls and two of them underwent mitoses. One of the multicellular regenerants could be examined cytologically and revealed to be a heterokaryon.  相似文献   

12.
Many animal species attempt to enhance their environments through niche construction or environmental engineering. Such efforts at environmental modification are proposed to play an important and underappreciated role in shaping biotic communities and evolutionary processes. 1 , 2 Homo sapiens is acknowledged as the ultimate niche constructing species in terms of our rich repertoire of ecosystem engineering skills and the magnitude of their impact. We have been trying to make the world a better place—for ourselves—for tens of thousands of years. I argue here that it is within this general context of niche‐construction behavior that our distant ancestors initially domesticated plants and animals and, in the process, first gained the ability to significantly alter the world's environments. The general concept of niche construction also provides the logical link between current efforts to understand domestication being conducted at two disconnected scales of analysis. At the level of individual plant and animal species, on one hand, there recently have been significant advances in our knowledge of the what, when, and where of domestication of an ever‐increasing number of species worldwide. 3 At the same time, large‐scale regional or universal developmental models of the transition to food production continue to be formulated. These incorporate a variety of “macro‐evolutionary” causal variables that may account for why human societies first domesticated plants and animals. 4 , 5 This essay employs the general concept of niche construction to address the intervening question of how, and to connect these two scales of analysis by identifying the general behavioral context within which human societies responded to “macroevolutionary” causal variables and forged new human plant or animal relationships of domestication.  相似文献   

13.
Electroporation is a useful technique to study gene function during development but its broad application is hampered due to the expensive equipment needed. We describe the construction of a transportable, simple and inexpensive electroporator delivering square pulses with varying length and amplitude. The device was successfully used for in utero electroporation in mouse with a performance comparable to that of commercial products.  相似文献   

14.
15.
《Cryobiology》1987,24(1):53-57
The possibility that the plant cell wall influences the severity of freezing injury was examined by comparing the freeze stress response of intact cells and protoplasts from four different suspension cultures. In no case did the intact cells suffer more injury than the respective wall-less protoplasts, showing that mechanical strain imposed by the cell wall during freeze-thaw stress is not a major determinant of injury. For three of the four species studied, cells from which the wall was removed showed significantly greater freezing injury, indicating that the plant cell wall may have a protective role. Other researchers have suggested that cell wall rigidity may minimize freezing injury by slowing freeze-induced loss of cell water. We found that decreased enzyme digestibility (perhaps indicating greater rigidity) of cell walls accompanied cold acclimation in various tissues. These results provide impetus to research which will characterize low-temperature-induced cell wall modification in cold acclimating tissues.  相似文献   

16.
In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3–10 fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts form recalcitrant plant species.Abbreviations ss single-stranded - ds double-stranded - CAT chloramphenicol acetyl transferase - NPTII neomycin phosphotransferase II - RT room temperature  相似文献   

17.
18.
19.
It has been nearly 100 years since Müller-Thurgau (26) employed cryomicroscopy to identify the cooling rate dependency of intracellular ice formation. Since that time cryomicroscopy has advanced from the “ice age” when Molisch (23) packed his microscope in ice to the “space age” of today when computer hardware developed for space satellite imagery is used for cryomicroscopic image analysis. Although interest in cryomicroscopy has been sporadic in the intervening period, current interest is at a high level—largely as a result of the refinement in the cryomicroscope design by Diller and Cravalho (9). The increased sophistication in cryostage design and precision of temperature control allow for quantitative studies of cell behavior during a freeze-thaw cycle. Not only does quantitative video image analysis facilitate this task, but it provides for increased resolution of cellular and subcellular responses during the freeze-thaw cycle. Most importantly, cryomicroscopy presents a researcher with a panorama of cellular behavior within which existing facts can be placed in perspective and from which future experiments can be more accurately focused.  相似文献   

20.
A rapid, simple method for nuclei isolation from plant protoplasts   总被引:1,自引:2,他引:1       下载免费PDF全文
A rapid, simple method for nuclei isolation and purification from soybean (Glycine max L. Merr.) protoplasts is described. The isolated nuclei exhibited active amino acid incorporation and RNA synthesis, but DNA synthesis was not detectable. Analysis by CsCl density gradient centrifugation showed that DNA isolated from nuclei had a single band, while DNA isolated from protoplasts consisted of three bands comprised of nuclear DNA, mitochondrial DNA, and chloroplast DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号