首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Deamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) is a potent inhibitor of thymidylate synthase. Its analogue, N(alpha)-[4-[N-[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl]-N-propargylamino]phenylacetyl]-L-glutamic acid, containing p-aminophenylacetic acid residue substituting p-aminobenzoic acid residue, was synthesized. The new analogue exhibited a moderately potent thymidylate synthase inhibition, of linear mixed type vs. the cofactor, N(5,10)-methylenetetrahydrofolate. The Ki value of 0.34 microM, determined with a purified recombinant rat hepatoma enzyme, was about 30-fold higher than that reported for inhibition of thymidylate synthase from mouse leukemia L1210 cells by ICI 198583 (Hughes et al., 1990, J. Med. Chem. 33, 3060). Growth of mouse leukemia L5178Y cells was inhibited by the analogue (IC50 = 1.26 mM) 180-fold weaker than by ICI 198583 (IC50 = 6.9 microM).  相似文献   

2.
Exposure of growing cultures of hepatoma cells in vitro to the lipid-soluble dihydrofolate reductase inhibitors metoprine (36 nM) or trimetrexate (2 nM) at subtoxic concentrations causes little change in cell growth rate, colony forming ability, cell cycle distribution, and de novo purine and thymidylate biosynthesis. The reductase inhibitors augment the cytotoxic activity of the thymidylate synthase inhibitor, 10-propargyl-5,8-dideazafolate by nearly 10-fold under optimal conditions. Treatment of the hepatoma cells with the reductase inhibitors for 72 h during growth caused approximately a 75% reduction in total cellular folates and 5,10-methylenetetrahydrofolate (primarily as polyglutamates) the substrate for thymidylate synthase. The reductase inhibitors also cause a doubling in the accumulation of 10-propargyl-5,8-dideazafolate polyglutamates. The combined antifolate treatment (metoprine or trimetrexate plus 10-propargyl-5,8-dideazafolate) expands the dUMP pool by 30-fold, which is more than the sum of either of the antifolates alone. Consequently, it is postulated that the enhanced activity of 10-propargyl-5,8-dideazafolate in combination with low concentrations of dihydrofolate reductase inhibitors is due to an increase in the ratio of inhibitor to substrate for thymidylate synthase of nearly 10-fold and an extensive enhancement of the dUMP pool. These conditions predispose the target enzyme and the cells to more effective metabolic blockade by 10-propargyl-5,8-dideazafolate which is presumably caused by the formation of an inhibited 10-propargyl-5,8-dideazafolate[polyglutamate]-thymidylate synthase-dUMP ternary complex.  相似文献   

3.
Selective inhibition of the localized excess production of NO by neuronal nitric oxide synthase (nNOS) has been targeted as a potential means of treating various neurological disorders. Based on observations from the X-ray crystal structures of complexes of nNOS with two nNOS-selective inhibitors, (4S)-N-{4-amino-5-[(2-amino)ethylamino]pentyl}-N'-nitroguanidine (L-Arg(NO2)-L-Dbu-NH2 (1) and 4-N-(Nomega-nitro-L-argininyl)-trans-4-amino-L-proline amide (2), a series of descarboxamide analogues was designed and synthesized (3-7). The most potent compound was aminopyrrolidine analogue 3, which exhibited better potency and selectivity for nNOS than parent compound 2. In addition, 3 provided higher lipophilicity and a lower molecular weight than 2, therefore having better physicochemical properties. Nalpha-Methylated analogues (8-11) also were prepared for increased lipophilicity of the inhibitors, but they had 4- to 5-fold weaker binding affinity compared to their parent compounds.  相似文献   

4.
A series of tetrahedral oxo acids of Group VA and VIA elements and of silicon and boron were examined as inhibitors of angiotensin-converting enzyme. Arsenate is a competitive inhibitor with a Ki of 27 +/- 1 mM, at least 10-fold more potent than phosphate. Dimethylarsinate is a competitive inhibitor with a Ki of 70 +/- 9 mM, 2-fold more potent than dimethylphosphinate. Oxo acids of boron, silicon, antimony, sulphur and selenium are not inhibitors. On the basis of these results and the strong inhibition of this zinc metallopeptidase by substrate analogues containing a tetrahedral phosphorus atom, two substrate analogues containing a tetrahedral arsenic atom were prepared. 2-Arsonoacetyl-L-proline is a competitive inhibitor with a Ki of 18 +/- 7 mM, more than 2000-fold weaker than that of its phosphorus analogue 2-phosphonoacetyl-L-proline. 4-Arsono-2-benzylbutanoic acid is a mixed inhibitor with a Ki of 0.5 +/- 0.2 mM, indistinguishable in potency from its phosphorus analogue 2-benzyl-4-phosphonobutanoic acid.  相似文献   

5.
A method is described herein for the isolation and quantitation of polyglutamates of the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid (CB3717) in tumor cells exposed to the drug in vitro. Cells were incubated with 50 microM 3H-CB3717 for 12 h and then disrupted by sonication. CB3717 and its polyglutamates were extracted by boiling in 0.01 M Tris-HCl pH 10. The extract was concentrated by lyophilization and analyzed by reverse phase HPLC (10 x 0.46-cm Polygosil 5-micron C18 column) using linear gradient elution (5-16% acetonitrile in 0.1 M sodium acetate, pH 5, over 15 min, 2 ml/min). Recovery of radioactivity at each stage of the method was greater than 70%. CB3717 and its polyglutamates were identified by co-chromatography with synthetic standards and by inhibition of partially purified TS. Quantitation was by means of radiochemical analysis. The 3H-CB3717 used in these studies was prepared by catalytic tritiation of diethyl-(2-chloro-4-nitrobenzoyl)-L-glutamate followed by consecutive alkylation with propargyl bromide and 2-amino-6-bromomethyl-3,4-dihydro-4-oxoquinazoline hydrobromide. The free diacid was prepared as required by hydrolysis in sodium hydroxide and purified by HPLC. Tritiation in only one position was confirmed by 3H NMR. Following the exposure of L1210 leukemia cells to 50 microM 3H-CB3717 for 12 h the total cellular radioactivity level was approximately 7 microM, of which 27% was present as polyglutamated metabolites with four and five glutamate residues.  相似文献   

6.
N4-Hydroxy-dCMP (N4-OH-dCMP), N4-methoxy-dCMP (N4-OMe-dCMP), and their 5-fluoro congeners (syntheses of which are described) were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N4-OH-dCMP was not a substrate (no dihydrofolate produced; no tritium released with 5-3H-labeled molecule), and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based, with arrest of a step posterior to addition of cofactor and blocking abstraction of the C(5) hydrogen. Ki values for N4-OH-dCMP and its 5-fluoro analogue were in the range 10(-7) - 10(-8) M, 2-3 orders of magnitude higher for the corresponding N4-OMe analogues. The 5-methyl analogue of N4-OH-dCMP was 10(4)-fold less potent, pointing to the anti rotamer of the imino form of exocyclic N4-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N4-OH-dCMP, suggesting interaction of both N4-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N4-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We recently reported the first benzoic acid, 1-[4-carboxy-2-(3-pentylamino)phenyl]-5,5-bis(hydroxymethyl)pyrrolidin-2-one (8), that is a potent inhibitor of avian influenza A neuraminidase (N9) and, unlike other reported potent neuraminidase inhibitors, does not contain a basic aliphatic amine or guanidine nor a simple N-acetyl grouping. However, 8 was a poor inhibitor of influenza B neuraminidase. In the present study we further evaluated 8 as an inhibitor of human influenza A NA isolates, and it was effective against N2NA but found to be 160-fold less active against N1NA. We also synthesized analogues of 8 involving moderate modifications of essential substituents on the pyrrolidinone ring. Specifically, the aminomethyl (9), hydroxyethyl (10), and aminoethyl (11) analogues were prepared. Only the most conservative change (compound 9) resulted in continued effective inhibition of influenza A, in addition to a noteworthy increase in the activity of 9 for N1NA. The effectiveness of 9 against influenza B neuraminidase was furthermore improved 10-fold relative to 8, but this activity remained 50-fold poorer than for type A NA.  相似文献   

8.
Synthesis of novel inhibitors of human IMP dehydrogenase is described. These inhibitors are isosteric methylenebis(sulfonamide) analogues 5-8 of earlier reported mycophenolic adenine methylenebis(phosphonate)s 1-3. The parent bis(phosphonate) 1 and its bis(sulfonamide) analogue 5 showed similar sub-micromolar inhibitory activity against IMPDH2 (K(i) approximately 0.2 microM). However, the bis(sulfonamide) analogues 6 and 8 substituted at the position 2 of adenine were approximately 3- to 10-fold less potent inhibitors of IMPDH2 (K(i)=0.3-0.4 microM) than the corresponding parent bis(phosphonate)s 2 and 3 (K(i)=0.04-0.11 microM), respectively.  相似文献   

9.
A line of human lymphocytic leukemia cells (CCRF-CEM) has been obtained which is 140-fold resistant to the potent cell growth inhibitor 5-fluoro-2'-deoxyuridine (FdUrd). The cells were also 11-fold cross-resistant to 5-fluorouracil. In contrast to several previous studies involving FdUrd-resistant mouse cells, thymidylate synthetase levels were not substantially elevated in these FdUrd-resistant human leukemic cells. Thymidine kinase activity was also unchanged in the resistant cells, although the levels of 5-fluoro-2'-deoxyuridylate (FdUMP), the potent inhibitor of thymidylate synthetase, generated at equimolar doses of FdUrd were about 40% lower than in the sensitive cells. Studies of the kinetics of FdUMP binding to thymidylate synthetase isolated from the FdUrd-resistant cells disclosed a considerably higher dissociation constant (Kd = 1.0 X 10(-9) M) for the ternary covalent enzyme . FdUMP . 5,10-methylene tetrahydrofolate complex compared to the value obtained with enzyme from sensitive cells (Kd = 4.4 X 10(-11) M). The thymidylate synthetase from the FdUrd-resistant cells also showed 17-fold weaker binding of 2'-deoxyuridylate, even though the Km value for 2'-deoxyuridylate was 3-fold lower compared to the enzyme from FdUrd-sensitive cells. The turnover number of the altered enzyme was 1.8-fold higher than that for the normal enzyme but the rate constants for the release of FdUMP from the ternary complex, which is also an enzyme-catalyzed reaction, were identical for both enzymes. Electrophoresis of the radiolabeled ternary complexes on nondenaturing gels showed small but reproducible differences in migration rates. These results demonstrate that the mechanism of resistance to FdUrd in this cell line involves an alteration in the target enzyme, thymidylate synthetase, which causes it have a lower affinity for nucleotides.  相似文献   

10.
N-[5-[N-(2-Amino-5-chloro-3,4-dihydro-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (6) and N-[5-[N-(5-chloro-3,4-dihydro-2-methyl-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (7), the first reported thiophene analogues of 5-chloro-5,8-dideazafolic acid, were synthesized and tested as inhibitors of tumor cell growth in culture. 4-Chloro-5-methylisatin (10) was converted stepwise to methyl 2-amino-5-methyl-6-chlorobenzoate (22) and 2-amino-5-chloro-3,4-dihydro-6-methyl-4-oxoquinazoline (19). Pivaloylation of the 2-amino group, followed by NBS bromination, condensation with di-tert-butyl N-(5-amino-2-thenoyl)-L-glutamate (28), and stepwise cleavage of the protecting groups with ammonia and TFA yielded. Treatment of 9 with acetic anhydride afforded 2,6-dimethyl-5-chlorobenz[1,3-d]oxazin-4-one (31), which on reaction with ammonia, NaOH was converted to 2,6-dimethyl-5-chloro-3,4-dihydroquinazolin-4-one (33). Bromination of, followed by condensation with and ester cleavage with TFA, yielded. The IC(50) of and against CCRF-CEM human leukemic lymphoblasts was 1.8+/-0.1 and 2.1+/-0.8 microM, respectively.  相似文献   

11.
Fluoro ketone inhibitors of hydrolytic enzymes   总被引:5,自引:0,他引:5  
M H Gelb  J P Svaren  R H Abeles 《Biochemistry》1985,24(8):1813-1817
The use of fluoro ketones as inhibitors of hydrolytic enzymes has been investigated. The acetylcholine analogues 6,6-dimethyl-1,1,1-trifluoro-2-heptanone and 3,3-difluoro-6,6-dimethyl-2-heptanone are inhibitors of acetylcholinesterase with Ki values of 16 X 10(-9) M and 1.6 X 10(-9) M, respectively. These fluoro ketones are 10(4)-10(5) times better as inhibitors than the corresponding methyl ketone. Since nucleophiles readily add to fluoro ketones, it is likely that these compounds inhibit acetylcholinesterase by formation of a stable hemiketal with the active-site serine residue. Fluoro ketone substrate analogues are also inhibitors of zinc metallo- and aspartylproteases. 2-Benzyl-4-oxo-5,5,5-trifluoropentanoic acid is an inhibitor of carboxypeptidase A (Ki = 2 X 10(-7) M). Trifluoromethyl ketone dipeptide analogues are good inhibitors of angiotensin converting enzyme. An analogue of pepstatin that contains a difluorostatone residue in place of statine has been prepared and found to be an extremely potent inhibitor of pepsin (Ki = 6 X 10(-11) M). The hydrated ketones are probably the inhibitory species since they are structural mimics of the tetrahedral intermediate that forms during the hydrolysis of peptide substrates.  相似文献   

12.
New water-soluble analogues of 1,3,7-trimethyluric acid with N-1 methyl replaced by various groups were prepared and evaluated for their ability to scavenge hydroxyl radicals as well as their protective potential against lipid peroxidation in erythrocyte membranes. The deoxyribose degradation method indicates that all the analogues tested effectively scavenge hydroxyl radicals and some of them show better activity than uric acid and methyluric acids. These effects are shown to be concentration dependent and are more potent at low concentrations (10-50 microM). Among the analogues tested, 1-butenyl-, 1-propargyl- and 1-benzyl-3,7-dimethyluric acids show high hydroxyl radical scavenging property with a reaction rate constant (Ks) of 3.2-6.7 x 10(10) M(-1) S(-1), 2.3-3.7 x 10(10) M(-1) S(-1) and 2.4-3.7 x 10(10) M(-1) S(-1), respectively. The effectiveness of these analogues as hydroxyl radical scavengers appears to be better than mannitol (Ks, 1.9-2.5 x 10(9) M(-1) S(-1)). With the exception of 1-pentyl- and 1-(2'-oxopropyl)-3,7-dimethyluric acids, all other analogues tested are effective inhibitors of tert-butylhydroperoxide-induced lipid peroxidation in human erythrocyte membranes. All the analogues tested are susceptible to peroxidation in the presence of hemoprotein and hydrogen peroxide. The present study has pointed out that it is possible to significantly enhance the antioxidant property of 1,3,7-trimethyluric acid by structural modification at N-1 position. Such compounds may be useful as antioxidants in vivo.  相似文献   

13.
A series of 17 novel 2-amino-4-oxo-5-[(substituted phenyl)thio]pyrrolo[2,3-d]pyrimidines were synthesized as potential inhibitors of thymidylate synthase (TS) and as antitumor agents. The analogues contain a variety of electron withdrawing substituents on the phenyl ring of the side chain and were evaluated as inhibitors of human TS (hTS) and Escherichia coli TS and of human and E. coli dihydrofolate reductase (DHFR). The analogues 14, 17, and 18 were potent inhibitors of hTS with IC50 values of 0.28, 0.21, and 0.22 microM, respectively, and were more potent than the clinically used ZD1694, 2 and LY231514, 3 against human TS.  相似文献   

14.
We have investigated some unusual aspects of the inhibition of mammalian thymidylate synthase (TS) by the folate antimetabolite, 10-propargyl-5,8-dideaza-folic acid (CB 3717). From our results, we conclude that binding of CB 3717 metabolites to one subunit of L1210 TS modified the conformation of the second active site of this enzyme so that it retained the ability to bind 5-fluro-2'-deoxyuridine-5'-monophosphate (FdUMP) but not its catalytic activity. Exposure of intact mouse L1210 cells to CB 3717 resulted in inactivation of cellular TS activity, yet desalted cytosol preparations from these cells retained the ability to bind FdUMP. The same effect was found with several analogs of CB 3717. Complexes of FdUMP formed in vitro with TS from cells exposed to CB 3717 were covalent and co-migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with complexes of FdUMP, folate cofactor, and TS from cells not exposed to CB 3717. In the presence of dUMP, a tightly bound complex rapidly formed between isolated pure TS and the pentaglutamate of CB 3717 but not the monoglutamate form of this compound. Binding experiments using CB 3717 pentaglutamate-inhibited TS suggested a stoichiometry of 1 mol of FdUMP bound per mol of dimeric TS.  相似文献   

15.
The substrate specificity of pig liver folylpolyglutamate synthetase (tetrahydrofolate:L-glutamate gamma-ligase (ADP-forming), EC 6.3.2.17) for classical 5,8-dideaza analogues of folic acid, isofolic acid aminopterin and isoaminopterin has been investigated. 5,8-Dideazafolate and 5,8-dideazaaminopterin are very effective substrates with activities approaching those of the best reduced folate substrates. The analogous isofolate analogues are less effective substrates, but still better than folic acid. The 5-chloro substituent is the only modification that consistently increases the on rate, with 5-chloro-5,8-dideazaaminopterin being the most effective substrate found, thus far, for the enzyme. Methylation at positions 9 or 10 generally decreases binding, while 5-methylation increases the binding of 4-oxoquinazolines, but decreases the binding of their 4-amino counterparts. The presence of a formyl group at N9 or N10 has the opposite effect, decreasing the binding of 4-oxo analogues while increasing the rate for 4-amino derivatives. Increases in on rate with methyl, formyl or 4-amino substitutions are only significant when the parent compound is a poor substrate, suggesting that these groups do not interact directly with the enzyme but cause conformational changes in the structure of the substrate that influence binding to the enzyme.  相似文献   

16.
Abstract

Three vitamin B6 analogues have been synthesized and tested as inhibitors of thymidylate synthase. The compounds are: 4′,5′-dichloro-, 4,5′-dibromo- and 4′, 5′-diiodo-pyridoxine. All three analogues inhibited the enzyme irreversibly. The kinetic data for the chloro- and bromo-analogues showed that a limiting rate of inhibition is approached as the inhibitor concentration is increased, which indicates that a reversible enzyme: inhibitor affinity complex is formed prior to the irreversible reaction. 4′,5′-Dibromo-pyridoxine exhibited a greater binding affinity (lower Ki) for thymidylate synthase than 4′,5′-dichloro-pyridoxine, and it also reacted faster to irreversibly inhibit the enzyme. The presence of the substrate dUMP (10μM) completely protected thymidylate synthase from inhibition. These data suggest that the halogenated vitamin B6 analogues are active site-directed inhitors of thymidylate synthase, which first bind reversibly to the catalytic site and then react irreversibly with the enzyme.  相似文献   

17.
Norcantharidin (3) is a potent PP1 (IC(50)=9.0+/-1.4 microM) and PP2A (IC(50)=3.0+/-0.4 microM) inhibitor with 3-fold PP2A selectivity and induces growth inhibition (GI(50) approximately 45 microM) across a range of human cancer cell lines including those of colorectal (HT29, SW480), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (DU145), neuroblastoma (BE2-C), and glioblastoma (SJ-G2) origin. Until now limited modifications to the parent compound have been tolerated. Surprisingly, simple heterocyclic half-acid norcantharidin analogues are more active than the original lead compound, with the morphilino-substituted (9) being a more potent (IC(50)=2.8+/-0.10 microM) and selective (4.6-fold) PP2A inhibitor with greater in vitro cytotoxicity (GI(50) approximately 9.6 microM) relative to norcantharidin. The analogous thiomorpholine-substituted (10) displays increased PP1 inhibition (IC(50)=3.2+/-0 microM) and reduced PP2A inhibition (IC(50)=5.1+/-0.41 microM), to norcantharidin. Synthesis of the analogous cantharidin analogue (19) with incorporation of the amine nitrogen into the heterocycle further increases PP1 (IC(50)=5.9+/-2.2 microM) and PP2A (IC(50)=0.79+/-0.1 microM) inhibition and cell cytotoxicity (GI(50) approximately 3.3 microM). These analogues represent the most potent cantharidin analogues thus reported.  相似文献   

18.
Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates   总被引:15,自引:0,他引:15  
We have studied the effects of methotrexate (MTX-Glu1) and the polyglutamate derivatives of methotrexate (MTXPGs) with 2, 3, 4, and 5 glutamyl residues on the catalytic activity of thymidylate synthase purified from MCF-7 human breast cancer cells and on the kinetics of the ternary complex formation by 5-fluoro-2'-deoxyuridine 5'-monophosphate, folate cofactor, and thymidylate synthase. MTX-Glu1 exhibited uncompetitive inhibition of thymidylate synthase when reaction kinetics were analyzed by either double reciprocal plots or a computerized mathematical model based on nonlinear least-squares curve fitting. The Ki for MTX-Glu1 inhibition was 13 microM and the I50 was 22 microM, irrespective of the degree of polyglutamation of the folate. In contrast, the polyglutamated derivatives of MTX all acted as noncompetitive inhibitors. The MTXPGs had 75-300-fold greater potency than MTX-Glu1 as inhibitors of thymidylate synthase catalytic activity, with Ki values from 0.17 to 0.047 microM for MTX-Glu2 to MTX-Glu5, respectively. Neither MTX-Glu1 nor MTXPGs promoted the formation of a charcoal-stable ternary complex with thymidylate synthase and 5-fluoro-2'-deoxyuridine 5'-monophosphate. CH2-H4PteGlu5 (where PteGlu represents pteroylglutamic acid) was found to be 40-fold more potent than CH2-H4PteGlu1 in participating in the formation of a ternary complex, and 10 microM MTX-Glu5 significantly inhibited the formation of a ternary complex containing this folate as cofactor. The inhibition was determined to be due to a reduction in the kon. The potency of this inhibition was markedly greater in the presence of CH2-H4PteGlu1 as compared to CH2-H4PteGlu5. This finding suggests that the degree of interference with complex formation in intact cells would depend on the state of polyglutamation of available folate cofactor. Ternary complex formation with H2PteGlu5 as the folate cofactor was also investigated, and a 50% reduction in complex formation was found in the presence of a 2 microM concentration of MTX-Glu5. These findings have significant implications regarding the mechanism of action of MTX-Glu1 and contribute to an understanding of the complex interactions of MTX-Glu1 and 5-fluorouracil.  相似文献   

19.
The substrate specificity of pig liver folylpolyglutamate synthetase (tetrahydrofolate: l-glutamate γ-ligase (ADP-forming), EC 6.3.2.17) for classical 5,8-dideaza analogues of folic acid, isofolic acid aminopterin and isoaminopterin has been investigated. 5,8-Dideazafolate and 5,8-dideazaaminopterin are very effective substrates with activities approaching those of the best reduced folate substrates. The analogous isofolate analogues are less effective substrates, but still better than folic acid. The 5-chloro substituent is the only modification that consistently increases the on rate, with 5-chloro-5,8-dideazaaminopterin being the most effective substrate found, thus far, for the enzyme. Methylation at positions 9 or 10 generally decreases binding, while 5-methylation increases the binding of 4-oxoquinazolines, but decreases the binding of their 4-amino counterparts. The presence of a formyl group at N9 or N10 has the opposite effect, decreasing the binding of 4-oxo analogues while increasing the rate for 4-amino derivatives. Increases in on rate with methyl, formyl or 4-amino substitutions are only significant when the parent compound is a poor substrate, suggesting that these groups do not interact directly with the enzyme but cause conformational changes in the structure of the substrate that influence binding to the enzyme.  相似文献   

20.
The substitution of aspartic acid for the naturally-occurring histidine residue in position B10 in human insulin results in an insulin analogue which displays an in vitro potency 4- to 5-fold greater than the parent compound. This substitution has been introduced into six insulin analogues which, before modification, display potencies ranging from less than 0.01-fold to 3-fold relative to natural insulin. In each case, the resulting aspartic acid-substituted analogue is substantially more potent than the parent compound. Thus, it is now possible to prepare "tailor-made" insulins with enhanced potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号