首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heat capacity, enthalpy, entropy, and Gibbs energy changes for the temperature-induced unfolding of 11 globular proteins of known three-dimensional structure have been obtained by microcalorimetric measurements. Their experimental values are compared to those we calculate from the change in solvent-accessible surface area between the native proteins and the extended polypeptide chain. We use proportionality coefficients for the transfer (hydration) of aliphatic, aromatic, and polar groups from gas phase to aqueous solution, we estimate vibrational effects, and we discuss the temperature dependence of each constituent of the thermodynamic functions. At 25 degrees C, stabilization of the native state of a globular protein is largely due to two favorable terms: the entropy of non-polar group hydration and the enthalpy of interactions within the protein. They compensate the unfavorable entropy change associated with these interactions (conformational entropy) and with vibrational effects. Due to the large heat capacity of nonpolar group hydration, its stabilizing contribution decreases quickly at higher temperatures, and the two unfavorable entropy terms take over, leading to temperature-induced unfolding.  相似文献   

2.
Hirano A  Shiraki K  Arakawa T 《Biopolymers》2012,97(2):117-122
Effect of polyethylene glycol (PEG) on protein solubility has been primarily ascribed to its large hydrodynamic size and thereby molecular crowding effect. However, PEG also shows characteristics of organic solvents. Here, we have examined the solubility of glycine and aliphatic and aromatic amino acids in PEG solutions. PEG400, PEG4000, and PEG20000 decreased the solubility of glycine, though to a much smaller magnitude than the level achieved by typical organic solvents, including ethanol and dimethyl sulfoxide. PEG4000 showed varying degree of interactions with amino acid side chains. The free energy of aliphatic side chains marginally increased by the addition of PEG4000, indicating their weak unfavorable interactions. However, it significantly decreased the free energy of the aromatic side chains and hence stabilized them. Thus, it was concluded that PEG behaves like weak organic solvents; namely PEG destabilized (interacted unfavorably with) polar and charged groups and stabilized (interacted favorably with) aromatic groups. Interestingly, the interaction of PEG20000, but neither PEG400 nor PEG4000, with glycine resulted in phase separation under the saturated concentration of glycine.  相似文献   

3.
T Arakawa  S N Timasheff 《Biochemistry》1987,26(16):5147-5153
The causes of the salting-in of beta-lactoglobulin by glycine and NaCl, a solubility behavior contrary to expectations, were probed by a detailed study of the interactions between these solvent components and the protein. The preferential interactions of beta-lactoglobulin with solvent components in aqueous glycine and NaCl systems have been compared with those of bovine serum albumin and lysozyme. At neutral pH, beta-lactoglobulin exhibited insignificant preferential interactions in glycine and NaCl at low cosolvent concentrations and an increasing preferential hydration at higher concentrations, the levels approaching the values expected from the other two proteins. These results indicate considerable binding of the electrolytes to beta-lactoglobulin, sufficient to compensate for the exclusion due to perturbation of the solvent surface tension. The difference between the preferential interactions of beta-lactoglobulin and the other proteins with these two solvent additives was shown to be the cause of the increase of beta-lactoglobulin solubility even at high concentrations of the additives, at which they have salting-out effects on the other proteins. The preferential interactions of NaCl with the three proteins were examined as a function of pH. The results showed no pH dependence of the preferential hydration for bovine serum albumin and lysozyme, while this parameter increased significantly for beta-lactoglobulin at lower pH. This suggests that the binding of electrolytes to beta-lactoglobulin is due to a unique charge distribution on the surface of the protein around neutral pH, which imparts to this protein a large dipole moment.  相似文献   

4.
Ethanol is used to precipitate proteins during various processes, including purification and crystallization. To elucidate the mechanism of protein precipitation by alcohol, we have investigated the solubility and structural changes of protein over a wide range of alcohol concentrations. Conformation of hen egg-white lysozyme was changed from native to α-helical rich structure in the presence of ethanol at concentrations above 60%. The solubility of lysozyme was reduced with increasing ethanol concentration, although gel formation at ethanol concentrations between 60% and 75% prevented accurate solubility measurements. SH-modified lysozyme showed largely unfolded structure in water and α-helical structure in the presence of ethanol. More importantly, solubility of the chemically modified lysozyme molecules decreased with increasing ethanol concentration. There is no indication of increased solubility upon unfolding of the lysozyme molecules by ethanol, indicating that any favorable interaction of ethanol with the hydrophobic side chains, if indeed occuring, is offset by the unfavorable interaction of ethanol with the hydrophilic side chains and peptide bonds.  相似文献   

5.
The temperature dependence of preferential solvent interactions with ribonuclease A in aqueous solutions of 30% sorbitol, 0.6 M MgCl2, and 0.6 M MgSO4 at low pH (1.5 and 2.0) and high pH (5.5) has been investigated. This protein was stabilized by all three co-solvents, more so at low pH than high pH (expect 0.6 M MgCl2 at pH 5.5). The preferential hydration of protein in all three co-solvents was high at temperatures below 30 degrees C and decreased with a further increase in temperature (for 0.6 M MgCl2 at pH 5.5, this was not significant), indicating a greater thermodynamic instability at low temperature than at high temperature. The preferential hydration of denatured protein (low pH, high temperature) was always greater than that of native protein (high pH, high temperature). In 30% sorbitol, the interaction passed to preferential binding at 45% for native ribonuclease A and at 55 degrees C for the denatured protein. Availability of the temperature dependence of the variation with sorbitol concentration of the chemical potential of the protein, (delta mu(2)/delta m3)T,p,m2, permitted calculation of the corresponding enthalpy and entropy parameters. Combination with available data on sorbitol concentration dependence of this interaction parameter gave (approximate) values of the transfer enthalpy, delta H2,tr, and transfer entropy delta S2,tr. Transfer of ribonuclease A from water into 30% sorbitol is characterized by positive values of the transfer free energy, transfer enthalpy, transfer entropy, and transfer heat capacity. On denaturation, the transfer enthalpy becomes more positive. This increment, however, is small relative to both the enthalpy of unfolding in water and to the transfer enthalpy of the native protein from water a 30% sorbitol solution.  相似文献   

6.
An attempt was made to explain the effect of concentrated salts on protein interaction with hydrophobic columns. From the previously observed results of preferential interactions for salting-out salts with proteins, it was shown that the free energy of the protein is increased by addition of the salts and this unfavorable free energy is smaller for the proteins bound to the columns because of their smaller surface area exposed to solvent; i.e., the bound form of the proteins is thermodynamically more stable. This explains the protein binding to the hydrophobic columns at high salt concentrations and the elution by decreasing the salt concentration. The unfavorable interaction free energy was greater for Na2SO4 or (NH4)2SO4 than for NaCl, which explains the stronger effect of the former salts on the protein binding to the columns. The observed favorable interaction between KSCN or guanidine hydrochloride and the proteins explains the decreasing effect of these salts on the protein binding to the hydrophobic columns.  相似文献   

7.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1924-1931
The observed preferential hydration of proteins in aqueous MgCl2 solutions at low pH and low salt concentration (Arakawa et al., 1990) prompted a scrutiny of possible protein stabilization by MgCl2 under the same conditions, in view of earlier observations in aqueous solutions of sugars, amino acids, and a number of salts that preferential hydration is usually accompanied by the stabilization of the native structure of globular proteins. The results of thermal transition experiments on five proteins (ribonuclease A, lysozyme, beta-lactoglobulin, chymotrypsinogen, and bovine serum albumin) revealed neither significant stabilization nor destabilization of the protein structures by MgCl2 both at acid conditions (except for ribonuclease A, which was stabilized, but to a much smaller extent than by MgSO4) and at higher pH at which MgCl2 displayed little preferential hydration. This was in contrast to the great stabilizing action of MgSO4 at the same conditions. 2-Methyl-2,4-pentanediol (MPD), which gives a very large preferential hydration of native ribonuclease A at pH 5.8 [Pittz & Timasheff (1978) Biochemistry 17, 615-623], was found to be a strong destabilizer of that protein at the same conditions. Analysis of the preferentially hydrating solvent systems led to their classification into two categories: those in which the preferential hydration is independent of solution conditions and those in which it varies with conditions. The first always stabilize protein structure, while the second do not. In the first category the predominant interaction is that of cosolvent exclusion, determined by solvent properties, with the protein being essentially inert. In the second category interactions are determined to a major extent by the chemical nature of the protein surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Effects of cryoprotectants on enzyme structure   总被引:2,自引:0,他引:2  
A L Fink 《Cryobiology》1986,23(1):28-37
The interaction between organic cosolvents and proteins is considered, especially from the point of view of effects on protein stability. It is concluded that each protein-cosolvent system constitutes a unique situation, making generalized predictions of expected effects difficult. Two classes of cosolvents are distinguished, based on the nature of their interactions with the protein surface. The thermodynamic instability to the system introduced by the presence of the cosolvent can be accommodated (i) by preferential exclusion of the cosolvent from the vicinity of the protein, (ii) by major structural changes of the protein, or (iii) by aggregation. Polyols tend to undergo preferential exclusion due to unfavorable interactions with nonpolar surface groups, whereas monohydric alcohols and other more hydrophobic cosolvents may undergo preferential exclusion due to adverse interactions with charged groups on the protein surface. Typical cosolvent effects on the structural and catalytic properties of enzymes are illustrated with data for ribonuclease and beta-lactamase with alcohol cosolvents. The relative hydrophobicity of the cosolvent is the major determinant of the effect of a cryosolvent on the enzyme stability and properties. Thus the position of the unfolding transition in cryosolvent will be decreased more by a more nonpolar cosolvent. Different cosolvents can have significantly different effects on the catalytic and structural properties of the same enzyme. Conversely the same cosolvent can have significantly different effects on similar proteins. The number and distribution of the nonpolar and charged groups on the protein's surface probably are the major determinants of the protein contribution to the solvent-protein interaction. The large temperature dependence of the rates of protein unfolding and refolding can be beneficially utilized in cryoprotectant studies of living cells.  相似文献   

9.
Interaction of non-electrolytes such as urea with proteins especially at lower concentrations is opening-up newer concepts in the understanding of protein stability and folding in proteomics. In this study, the secondary and tertiary structural characteristics and thermal stability of human serum albumin at lower concentrations of urea have been monitored. The protein attains a molten globule like structure at concentration urea below 2 M. This structural state also shows an increase in the alpha-helical content as compared to the native state. At concentrations of urea above 2 M, human serum albumin starts unfolding, resulting in a three-state transition with two mid points of transitions at around 4 M and 7 M urea concentrations. The characteristics of the partially folded intermediates are discussed with respect to the three component system analyses. Preferential hydration dominates over preferential interaction at lower concentration of urea (up to 2.5 M) and at higher concentration, the preferential interaction overtakes preferential hydration in a competitive manner. Formation of structural intermediates at lower concentration of urea is hypothesized as a general phenomenon in proteins and fits in with the observation with preferential interaction parameters by Timasheff and co-workers in the case of lysozyme and ribonuclease at different pH values.  相似文献   

10.
The guanidinium chloride- and urea-induced unfolding of FprA, a mycobacterium NADPH-ferredoxin reductase, was examined in detail using multiple spectroscopic techniques, enzyme activity measurements and size exclusion chromatography. The equilibrium unfolding of FprA by urea is a cooperative process where no stabilization of any partially folded intermediate of protein is observed. In comparison, the unfolding of FprA by guanidinium chloride proceeds through intermediates that are stabilized by interaction of protein with guanidinium chloride. In the presence of low concentrations of guanidinium chloride the protein undergoes compaction of the native conformation; this is due to optimization of charge in the native protein caused by electrostatic shielding by the guanidinium cation of charges on the polar groups located on the protein side chains. At a guanidinium chloride concentration of about 0.8 m, stabilization of apo-protein was observed. The stabilization of apo-FprA by guanidinium chloride is probably the result of direct binding of the Gdm+ cation to protein. The results presented here suggest that the difference between the urea- and guanidinium chloride-induced unfolding of FprA could be due to electrostatic interactions stabilizating the native conformation of this protein.  相似文献   

11.
Preferential interaction measurements between proteins and monosodium glutamate were carried out to arrive at an understanding of the mechanism of its strong effect on tubulin stability and self-assembly into microtubules. For all proteins studied, i.e. bovine serum albumin, lysozyme, beta-lactoglobulin, and calf brain tubulin, the protein showed a large preferential hydration in the presence of monosodium glutamate. The enhancement of tubulin self-association by monosodium glutamate can be interpreted in terms of the large unfavorable free energy of interaction between the additive and the protein. Preferential interactions were also examined for lysine hydrochloride, which also gave a preferential hydration of the proteins, except for tubulin. The dependence of the preferential hydration parameter on proteins was different for the two additives, suggesting the importance of net electrostatic charges of proteins in their interaction with glutamate anions and lysinium cations. The zero preferential interaction of lysine hydrochloride with tubulin indicates an affinity of the lysine cation for the protein. Both additives increased the transition temperature of proteins. This can be understood in terms of the unfavorable free energy of interaction between the additive and the protein surface, which should be even more unfavorable when the denaturation causes an increase in the surface area.  相似文献   

12.
Bolon DN  Mayo SL 《Biochemistry》2001,40(34):10047-10053
Most globular proteins contain a core of hydrophobic residues that are inaccessible to solvent in the folded state. In general, polar residues in the core are thermodynamically unfavorable except when they are able to form intramolecular hydrogen bonds. Compared to hydrophobic interactions, polar interactions are more directional in character and may aid in fold specificity. In a survey of 263 globular protein structures, we found a strong positive correlation between the number of polar residues at core positions and protein size. To probe the importance of buried polar residues, we experimentally tested the effects of hydrophobic mutations at the five polar core residues in Escherichia coli thioredoxin. Proteins with single hydrophobic mutations (D26I, C32A, C35A, T66L, and T77V) all have cooperative unfolding transitions like the wild type (wt), as determined by chemical denaturation. Relative to wt, D26I is more stable while the other point mutants are less stable. The combined 5-fold mutant protein (IAALV) is less stable than wt and has an unfolding transition that is substantially less cooperative than that of wt. NMR spectra as well as amide deuterium exchange indicate that IAALV is likely sampling a number of low-energy structures in the folded state, suggesting that polar residues in the core are important for specifying a well-folded native structure.  相似文献   

13.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1914-1923
The correlation between protein solubility and the preferential interactions of proteins with solvent components was critically examined with aqueous MgCl2 as the solvent system. Preferential interaction and solubility measurements with three proteins, beta-lactoglobulin, bovine serum albumin, and lysozyme, resulted in similar patterns of interaction. At acid pH (pH 2-3) and lower salt concentrations (less than 2 M), the proteins were preferentially hydrated, while at higher salt concentrations, the interaction was either that of preferential salt binding or low salt exclusion. At pH 4.5-5, all three proteins exhibited either very low preferential hydration or preferential binding of MgCl2. These results were analyzed in terms of the balance between salt binding and salt exclusion attributed to the increase in the surface tension of water by salts, which is invariant with conditions. It was shown that the increase in salt binding at high salt concentration is a reflection of mass action, while its decrease at acid pH is due to the electrostatic repulsion between Mg2+ ions and the high net positive charge on the protein. The preferential interaction pattern was paralleled by the variation of protein solubility with solvent conditions. Calculation of the transfer free energies from water to the salt solutions for proteins in solution and in the precipitate showed dependencies on salt concentration. This indicates that the nature of interactions between proteins and solvent components is the same in solution and in the solid state, which implies no change in protein structure during precipitation. Analysis of the transfer free energies and preferential interaction parameter in terms of the salting-in, salting-out, and weak ion binding contributions has led to the conclusions that, when the weak ion binding contribution is small, the predominant protein-salt interaction must be that of preferential salt exclusion most probably caused by the increase of the surface tension of water by addition of the salt. A necessary consequence of this is salting-out of the protein, if the protein structure is to remain unaltered.  相似文献   

14.
A semi-empirical method has been used to estimate the thermodynamic parameters of hydration of buried surface areas of ribonuclease S, lysozyme and myoglobin from the model of complete unfolding according to Ooi et al. ((1987) Proc. Natl. Acad. Sci. USA 84, 3086-3090). The buried surface area of proteins is considered as the difference between the accessible surface area of native protein and the completely extended polypeptide chain according to Lee and Richards ((1971) J. Mol. Biol. 55, 379-400). The contributions of nonpolar and polar protein groups to the general value of Gibbs energy, enthalpy, entropy and heat capacity of hydration have been determined. The obtained results on the thermodynamic behavior of proteins in the process of complete unfolding are in good agreement with the results of microcalorimetric studies of thermal denaturation.  相似文献   

15.
Protein-protein interactions were measured for ovalbumin and for lysozyme in aqueous salt solutions. Protein-protein interactions are correlated with a proposed potential of mean force equal to the free energy to desolvate the protein surface that is made inaccessible to the solvent due to the protein-protein interaction. This energy is calculated from the surface free energy of the protein that is determined from protein-salt preferential-interaction parameter measurements. In classical salting-out behavior, the protein-salt preferential interaction is unfavorable. Because addition of salt raises the surface free energy of the protein according to the surface-tension increment of the salt, protein-protein attraction increases, leading to a reduction in solubility. When the surface chemistry of proteins is altered by binding of a specific ion, salting-in is observed when the interactions between (kosmotrope) ion-protein complexes are more repulsive than those between the uncomplexed proteins. However, salting-out is observed when interactions between (chaotrope) ion-protein complexes are more attractive than those of the uncomplexed proteins.  相似文献   

16.
Bagger HL  Fuglsang CC  Westh P 《Biochemistry》2003,42(34):10295-10300
Regulation of hydration behavior, and the concomitant effects on solubility and other properties, has been suggested as a main function of protein glycosylation. In this work, we have studied the hydration of the heavily glycosylated Peniophora lycii phytase in solutions (0.15-1.1 m) of the two compatible solutes glycerol and sorbitol. Osmometric measurements showed that glycerol preferentially binds to phytase (i.e., glycerol-glycoprotein interactions are more favorable than water-glycoprotein interactions resulting in a preferential accumulation of glycerol near the protein interface), while sorbitol is preferentially excluded from the hydration sphere (water-glycoprotein interactions are the more favorable). To assess contributions from carbohydrate and peptide moieties, respectively, we compared phytase (Phy) and a modified, yet enzymatically active form (dgPhy) in which 90% of the glycans had been removed. This revealed that both polyols showed a pronounced and approximately equal degree of preferential binding to the carbohydrate moiety. This preferential binding of polyols to glycans is in contrast to the exclusion from peptide interfaces observed here (for dgPhy) and in numerous previous reports on nonglycosylated proteins. Despite the distinct differences between peptide and carbohydrate groups, glycosylation had no effect on the stabilizing action provided by glycerol and sorbitol. On the basis of this, it was concluded that the carbohydrate mantle of Phy is equally accessible in the native and thermally denatured states, respectively (most likely fully accessible in both), and thus that its interactions with compatible solutes have little or no effect on conformational equilibria of the glycoprotein. For solubility and aggregation equilibria, on the other hand, the results suggest a polyol-induced stabilization of monomeric forms.  相似文献   

17.
Thermal stability of proteins in the presence of poly(ethylene glycols)   总被引:4,自引:0,他引:4  
L L Lee  J C Lee 《Biochemistry》1987,26(24):7813-7819
Thermal unfolding of ribonuclease, lysozyme, chymotrypsinogen, and beta-lactoglobulin was studied in the absence or presence of poly(ethylene glycols). The unfolding curves were fitted to a two-state model by a nonlinear least-squares program to obtain values of delta H, delta S, and the melting temperature Tm. A decrease in thermal transition temperature was observed in the presence of poly(ethylene glycol) for all of the protein systems studied. The magnitude of such a decrease depends on the particular protein and the molecular size of poly(ethylene glycol) employed. A linear relation can be established between the magnitude of the decrease in transition temperature and the average hydrophobicity of these proteins; namely, the largest observable decrease is associated with the protein of the highest hydrophobicity. Further analysis of the thermal unfolding data reveals that poly(ethylene glycols) significantly effect the relation between delta H degrees of unfolding and temperature for all the proteins studied. For beta-lactoglobulin, a plot of delta H versus Tm indicates a change in slope from a negative to a positive value, thus implying a change in delta Cp in thermal unfolding caused by the presence of poly(ethylene glycols). Results from solvent-protein interaction studies indicate that at high temperature poly(ethylene glycol) 1000 preferentially interacts with the denatured state of protein but is excluded from the native state at low temperature. These observations are consistent with the fact that poly(ethylene glycols) are hydrophobic in nature and will interact favorably with the hydrophobic side chains exposed upon unfolding; thus, it leads to a lowering of thermal transition temperature.  相似文献   

18.
The theoretical model of proteins on the two-dimensional square lattice, introduced previously, is extended to include the hydrophobic interactions. Two proteins, whose native conformations have different folded patterns, are studied. Units in the protein chains are classified into polar units and nonpolar units. If there is a vacant lattice point next to a nonpolar unit, it is interpreted as being occupied by solvent water and the entropy of the system is assumed to decrease by a certain amount. Besides these hydrophobic free energies, the specific long-range interactions studied in previous papers are assumed to be operative in a protein chain. Equilibrium properties of the folding and unfolding transitions of the two proteins are found to be similar, even though one of them was predicted, based on the one globule model of the transitions, to unfold through a significant intermediate state (or at least to show a tendency toward such a behavior), when the hydrophobic interactions are strongly weighted. The failure of this prediction led to the development of a more refined model of transitions; a non-interacting local structure model. The hydrophobic interactions assumed here have a character of non-specific long-range interactions. Because of this character the hydrophobic interactions have the effect of decelerating the folding kinetics. The deceleration effect is less pronounced in one of the two proteins, whose native conformation is stabilized by many pairs of medium-range interactions. It is therefore inferred that the medium-range interactions have the power to cope with the decelerating effect of the non-specific hydrophobic interactions.  相似文献   

19.
Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity.  相似文献   

20.
Changes in free energy are normally used to track the effect of temperature on the stability of proteins and hydrophobic interactions. Use of this procedure on the aqueous solubility of hydrocarbons, a standard representation of the hydrophobic effect, leads to the conclusion that the hydrophobic effect increases in strength as the temperature is raised to approximately 140 degrees C. Acceptance of this interpretation leads to a number of far-reaching conclusions that are at variance with the original conception of the hydrophobic effect and add considerably to the complexity of interpretation. There are two legitimate thermodynamic functions that can be used to look at stability as a function of temperature: the standard Gibbs free energy change, deltaG degrees, and deltaG degrees/T. The latter is proportional to the log of the equilibrium constant and is sometimes called the Massieu-Planck function. Arguments are presented for using deltaG degrees/T rather than deltaG degrees for variations in stability with temperature. This makes a considerable difference in the interpretation of the hydrophobic interaction, but makes little change in the stability profile of proteins. Protein unfolding and the aqueous solubility of benzene are given as examples. The contrast between protein unfolding and the hydration of nonpolar molecules provides a rough estimate of the contribution of other factors that stabilize and destabilize protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号