首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)‐mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

2.
Sphingosine kinases (SK) regulate the balance between proapoptotic ceramides and mitogenic sphingosine-1-phosphate (S1P); however, the functions of the two isoenzymes (SK1 and SK2) in tumor cells are not well defined. Therefore, RNA interference was used to assess the individual roles of SK1 and SK2 in tumor cell sphingolipid metabolism, proliferation, and migration/invasion. Treatment of A498, Caki-1, or MDA-MB-231 cells with siRNAs specific for SK1 or SK2 effectively suppressed the expression of the target mRNA and protein. Ablation of SK1 did not affect mRNA or protein levels of SK2 and reduced intracellular levels of S1P while elevating ceramide levels. In contrast, ablation of SK2 elevated mRNA, protein, and activity levels of SK1 and increased cellular S1P levels. Interestingly, cell proliferation and migration/invasion were suppressed more by SK2-selective ablation than by SK1-selective ablation, showing that the increased S1P does not rescue these phenotypes. Similarly, exogenous S1P did not rescue the cells from the antiproliferative or antimigratory effects of the siRNAs. Consistent with these results, differential effects of SK1- and SK2-selective siRNAs on signaling proteins, including p53, p21, ERK1, ERK2, FAK, and VCAM1, indicate that SK1 and SK2 have only partially overlapping functions in tumor cells. Overall, these data indicate that loss of SK2 has stronger anticancer effects than does suppression of SK1. Consequently, selective inhibitors of SK2 may provide optimal targeting of this pathway in cancer chemotherapy.  相似文献   

3.
4.
Sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a lipid messenger that plays an important role in a variety of mammalian cell processes, including inhibition of apoptosis and stimulation of cell proliferation. Basal levels of S1P in cells are generally low but can increase rapidly when cells are exposed to various agonists through rapid and transient activation of SK activity. To date, elucidation of the exact signaling pathways affected by these elevated S1P levels has relied on the use of SK inhibitors that are known to have direct effects on other enzymes in the cell. Furthermore, these inhibitors block basal SK activity, which is thought to have a housekeeping function in the cell. To produce a specific inhibitor of SK activation we sought to generate a catalytically inactive, dominant-negative SK. This was accomplished by site-directed mutagenesis of Gly(82) to Asp of the human SK, a residue identified through sequence similarity to the putative catalytic domain of diacylglycerol kinase. This mutant had no detectable SK activity when expressed at high levels in HEK293T cells. Activation of endogenous SK activity by tumor necrosis factor-alpha (TNFalpha), interleukin-1beta, and phorbol esters in HEK293T cells was blocked by expression of this inactive sphingosine kinase (hSK(G82D)). Basal SK activity was unaffected by expression of hSK(G82D). Expression of hSK(G82D) had no effect on TNFalpha-induced activation of protein kinase C and sphingomyelinase activities. Thus, hSK(G82D) acts as a specific dominant-negative SK to block SK activation. This discovery provides a powerful tool for the elucidation of the exact signaling pathways affected by elevated S1P levels following SK activation. To this end we have employed the dominant-negative SK to demonstrate that TNFalpha activation of extracellular signal-regulated kinases 1 and 2 (ERK1,2) is dependent on SK activation.  相似文献   

5.
6.
We demonstrate here that the bioactive lipid sphingosine 1-phosphate (S1P) uses sphingosine 1-phosphate receptor 4 (S1P4) and human epidermal growth factor receptor 2 (HER2) to stimulate the extracellular signal regulated protein kinase 1/2 (ERK-1/2) pathway in MDA-MB-453 cells. This was based on several lines of evidence. First, the S1P stimulation of ERK-1/2 was abolished by JTE013, which we show here is an S1P2/4 antagonist and reduced by siRNA knockdown of S1P4. Second, the S1P-stimulated activation of ERK-1/2 was almost completely abolished by a HER2 inhibitor (ErbB2 inhibitor II) and reduced by siRNA knockdown of HER2 expression. Third, phyto-S1P, which is an S1P4 agonist, stimulated ERK-1/2 activation in an S1P4- and HER2-dependent manner. Fourth, FTY720 phosphate, which is an agonist at S1P1,3,4,5 but not S1P2 stimulated activation of ERK-1/2. Fifth, S1P stimulated the tyrosine phosphorylation of HER2, which was reduced by JTE013. HER2 which is an orphan receptor tyrosine kinase is the preferred dimerization partner of the EGF receptor. However, EGF-stimulated activation of ERK-1/2 was not affected by siRNA knockdown of HER2 or by ErbB2 (epidermal growth factor receptor 2 (or HER2)) inhibitor II in MDA-MB-453 cells. Moreover, S1P-stimulated activation of ERK-1/2 does not require an EGF receptor. Thus, S1P and EGF function in a mutually exclusive manner. In conclusion, the magnitude of the signaling gain on the ERK-1/2 pathway produced in response to S1P can be increased by HER2 in MDA-MB-453 cells. The linkage of S1P with an oncogene suggests that S1P and specifically S1P4 may have an important role in breast cancer progression.  相似文献   

7.
Sphingosine kinase 1 (SK1) is an enzyme that catalyses the phosphorylation of sphingosine to produce the bioactive lipid sphingosine 1-phosphate (S1P). We demonstrate here that FTY720 (Fingolimod?) and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 catalytic activity and induce the proteasomal degradation of this enzyme in human pulmonary artery smooth muscle cells, MCF-7 breast cancer cells and androgen-independent LNCaP-AI prostate cancer cells. Proteasomal degradation of SK1 in response to FTY720 and (S)-FTY720 vinylphosphonate is associated with the down-regulation of the androgen receptor in LNCaP-AI cells. (S)-FTY720 vinylphosphonate also induces the apoptosis of these cells. These findings indicate that SK1 is involved in protecting LNCaP-AI from apoptosis. This protection might be mediated by so-called ‘inside-out’ signalling by S1P, as LNCaP-AI cells exhibit increased expression of S1P2/3 receptors and reduced lipid phosphate phosphatase expression (compared with androgen-sensitive LNCaP cells) thereby potentially increasing the bioavailability of S1P at S1P2/3 receptors.  相似文献   

8.
Sphingosine kinase 1 (SK1) is one of the two known kinases, which generates sphingosine-1-phosphate (S1P), a potent endogenous lipid mediator involved in cell survival, proliferation, and cell-cell interactions. Activation of SK1 and intracellular generation of S1P were suggested to be part of the growth and survival factor-induced signaling, and overexpression of SK1 provoked cell tumorigenic transformation. Using a highly selective and sensitive LC-MS/MS approach, here we show that SK1 overexpression, but not SK2, in different primary cells and cultured cell lines results in predominant upregulation of the synthesis of dihydrosphingosine-1-phosphate (DHS1P) compared to S1P. Stable isotope pulse-labeling experiments in conjunction with LC-MS/MS quantitation of different sphingolipids demonstrated strong interference of overexpressed SK1 with the de novo sphingolipid biosynthesis by deviating metabolic flow of newly formed sphingoid bases from ceramide formation toward the synthesis of DHS1P. On the contrary, S1P biosynthesis was not directly linked to the de novo sphingoid bases transformations and was dependent on catabolic generation of sphingosine from complex sphingolipids. As a result of SK1 overexpression, migration and Ca2+-response of human pulmonary artery endothelial cells (HPAEC) to stimulation with external S1P, but not thrombin, was strongly impaired. In contrast, selective increase in intracellular content of DHS1P or S1P through the uptake and phosphorylation of corresponding sphingoid bases had no effect on S1P-induced signaling or facilitation of wound healing. Furthermore, infection of human bronchial epithelial cells (HBEpC) with RSV A-2 virus increased SK1-mediated synthesis of DHS1P and S1P, whereas TNF-alpha enhanced only S1P production in HPAEC. These findings uncover a new functional role for SK1, which can control survival/death (DHS1P-S1P/ceramides) balance by targeting sphingolipid de novo biosynthesis and selectively generating DHS1P at a metabolic step preceding ceramide formation.  相似文献   

9.
We investigated the role played by agonist-mediated phosphorylation of the G(q/11)-coupled M(3)-muscarinic receptor in the mechanism of activation of the mitogen-activated protein kinase pathway, ERK-1/2, in transfected Chinese hamster ovary cells. A mutant of the M(3)-muscarinic receptor, where residues Lys(370)-Ser(425) of the third intracellular loop had been deleted, showed a reduced ability to activate the ERK-1/2 pathway. This reduction was evident despite the fact that the receptor was able to couple efficiently to the phospholipase C second messenger pathway. Importantly, the ERK-1/2 responses to both the wild-type M(3)-muscarinic receptor and DeltaLys(370)-Ser(425) receptor mutant were dependent on the activity of protein kinase C. Our results, therefore, indicate the existence of two mechanistic components to the ERK-1/2 response, which appear to act in concert. First, the activation of protein kinase C through the diacylglycerol arm of the phospholipase C signaling pathway and a second component, absent in the DeltaLys(370)-Ser(425) receptor mutant, that is independent of the phospholipase C signaling pathway. The reduced ability of the DeltaLys(370)-Ser(425) receptor mutant to activate the ERK-1/2 pathway correlated with an approximately 80% decrease in the ability of the receptor to undergo agonist-mediated phosphorylation. Furthermore, we have previously shown that M(3)-muscarinic receptor phosphorylation can be inhibited by a dominant negative mutant of casein kinase 1alpha and by expression of a peptide corresponding to the third intracellular loop of the M(3)-muscarinic receptor. Expression of these inhibitors of receptor phosphorylation reduced the wild-type M(3)-muscarinic receptor ERK-1/2 response. We conclude that phosphorylation of the M(3)-muscarinic receptor on sites in the third intracellular loop by casein kinase 1alpha contributes to the mechanism of receptor activation of ERK-1/2 by working in concert with the diacylglycerol/PKC arm of the phospholipase C signaling pathway.  相似文献   

10.
Although several studies have shown that a subset of insulin-like growth factor (IGF) signals require the activation of heterotrimeric G proteins, the molecular mechanisms underlying IGF-stimulated G protein signaling remain poorly understood. Here, we have studied the mechanism by which endogenous IGF receptors activate the ERK1/2 mitogen-activated protein kinase cascade in HEK293 cells. In these cells, treatment with pertussis toxin and expression of a Galpha(q/11)-(305-359) peptide that inhibits G(q/11) signaling additively inhibited IGF-stimulated ERK1/2 activation, indicating that the signal was almost completely G protein-dependent. Treatment with IGF-1 or IGF-2 promoted translocation of green fluorescent protein (GFP)-tagged sphingosine kinase (SK) 1 from the cytosol to the plasma membrane, increased endogenous SK activity within 30 s of stimulation, and caused a statistically significant increase in intracellular and extracellular sphingosine 1-phosphate (S1P) concentration. Using a GFP-tagged S1P1 receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that IGF-1 and IGF-2 induced GFP-S1P receptor internalization and that the effect was blocked by pretreatment with the SK inhibitor, dimethylsphingosine. Treating cells with dimethylsphingosine, silencing SK1 expression by RNA interference, and blocking endogenous S1P receptors with the competitive antagonist VPC23019 all significantly inhibited IGF-stimulated ERK1/2 activation, suggesting that IGFs elicit G protein-dependent ERK1/2 activation by stimulating SK1-dependent transactivation of S1P receptors. Given the ubiquity of SK and S1P receptor expression, S1P receptor transactivation may represent a general mechanism for G protein-dependent signaling by non-G protein-coupled receptors.  相似文献   

11.
The pro-fibrotic connective tissue growth factor (CTGF) has been linked to the development and progression of diabetic vascular and renal disease. We recently reported that low-density lipoproteins (LDL) induced expression of CTGF in aortic endothelial cells. However, the molecular mechanisms are not fully defined. Here, we have studied the mechanism by which LDL regulates CTGF expression in renal mesangial cells. In these cells, treatment with pertussis toxin abolished LDL-stimulated activation of ERK1/2 and c-Jun N-terminal kinase (JNK), indicating the involvement of heterotrimeric G proteins in LDL signaling. Treatment with LDL promoted activation and translocation of endogenous sphingosine kinase 1 (SK1) from the cytosol to the plasma membrane concomitant with production of sphingosine-1-phosphate (S1P). Pretreating cells with SK inhibitor, dimethylsphinogsine or down-regulation of SK1 and SK2 revealed that LDL-dependent activation of ERK1/2 and JNK is mediated by SK1. Using a green fluorescent protein-tagged S1P? receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that LDL induced S1P receptor activation. Pretreating cells with S1P?/S1P? receptor antagonist VPC23019 significantly inhibited activation of ERK1/2 and JNK by LDL, suggesting that LDL elicits G protein-dependent activation of ERK1/2 and JNK by stimulating SK1-dependent transactivation of S1P receptors. Furthermore, S1P stimulation induced expression of CTGF in a dose-dependent manner that was markedly inhibited by blocking the ERK1/2 and JNK signaling pathways. LDL-induced CTGF expression was pertussis toxin sensitive and inhibited by dimethylsphinogsine down-regulation of SK1 and VPC23019 treatment. Our data suggest that SK1-dependent S1P receptor transactivation is upstream of ERK1/2 and JNK and that all three steps are required for LDL-regulated expression of CTGF in mesangial cells.  相似文献   

12.
Heat shock proteins (HSPs) are potent protectors of cellular integrity against environmental stresses, including toxic microbial products. To investigate the mechanism of HSP-70 cell protection against bacterial lipopolysaccharide (LPS), we established a stable HSP-70 gene-transfected RAW 264.7 murine macrophage model of LPS-induced cell death. Bacterial LPS increases the activity of sphingosine kinase 1 (SK1), which catalyzes formation of sphingosine-1-phosphate (S1P). S1P functions as a critical signal for initiation and maintenance of diverse aspects of immune cell activation and function. When mouse macrophages were incubated with Escherichia coli LPS (1 μg/ml) and sphingosine kinase inhibitor (SKI, 5 μM), 90% of cells died. Neither LPS nor SKI alone at these doses damaged the cells. The LPS/SKI-induced cell death was partially reversed by overexpression of HSP-70 in gene-transfected macrophages. The specificity of HSP-70 in this reversal was demonstrated by transfection of HSP-70-specific siRNA. Down-regulation of HSP-70 expression after transfection of siRNA specific for HSP-70 was associated with increased LPS/SKI-induced cell damage. Overexpression of human or murine HSP-70 (HSPA1A and Hspa1a, respectively) increased both cellular SK1 mRNA and protein levels. Cellular heat shock also increased SK1 protein. These studies confirm the importance of SK1 as a protective moiety in LPS-induced cell injury and demonstrate that HSP-70-mediated protection from cells treated with LPS/SKI is accompanied by upregulating expression of SK1. HSP-70-mediated increases in SK1 and consequent increased levels of S1P may also play a role in protection of cells from other processes that lead to programmed cell death.  相似文献   

13.
The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and shuts down signaling from 7-transmembrane receptors (7TMs). Although, receptor activity controls GRK2 expression levels, the underlying molecular mechanisms are poorly understood. We have previously shown that extracellular signal-regulated kinase (ERK1/2) activation increases GRK2 expression [J. Theilade, J. Lerche Hansen, S. Haunso, S.P. Sheikh, Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2), FEBS Lett. 518 (2002) 195-199]. In the present study, we found that ERK1/2 regulates GRK2 degradation rather than synthesis. ERK1/2 blockade using PD98059 decreased GRK2 cellular levels to 0.25-fold of control in Cos7 cells. This effect was due to enhanced degradation of the GRK2 protein, since proteasome blockade prevented down-regulation of GRK2 protein levels in the presence of PD98059. Further, ERK blockade had no effect on GRK2 synthesis as probed using a reporter construct carrying the GRK2 promoter upstream of the luciferase gene. We predict ERK1/2 mediated GRK2 protection could be a general phenomenon as proteasome inhibition increased GRK2 expression in two other cell lines, HEK293 and NIH3T3.  相似文献   

14.
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.  相似文献   

15.
The aryl hydrocarbon receptor nuclear translocator (Arnt) and hypoxia-inducible factor (HIF)-1alpha mediate cellular responses to hypoxia. We investigated the ability of hypoxia to regulate Arnt and HIF-1alpha mRNA in the heart in vivo. We cloned avian Arnt, developed an in vivo model of chronic cardiac hypoxia, and measured expression of cardiac Arnt and HIF-1alpha mRNA by quantitative RT-PCR. Chronic hypoxic exposure (24 h to 15% O(2)) of day 9 chick embryos resulted in a 30-fold increase in covalent binding of (3)H-misonidazole, a hypoxic tissue marker, to cardiac tissue, and a 2-fold induction of cardiac inducible nitric oxide synthase mRNA, compared to normoxic controls. In this same model, cardiac Arnt mRNA expression decreased by 35%, while HIF-1alpha mRNA expression increased 400%. These data suggest that regulation of Arnt and HIF-1alpha mRNA expression may contribute to the physiological responses of the heart during prolonged hypoxia.  相似文献   

16.
Lim M  Choi SK  Cho YE  Yeon SI  Kim EC  Ahn DS  Lee YH 《PloS one》2012,7(4):e35177

Aims

The goal of the current study was to determine whether the sphingosine kinase 1 (SK1)/sphingosine-1-phosphate (S1P) pathway is involved in myogenic vasoconstriction under normal physiological conditions. In the present study, we assessed whether endogenous S1P generated by pressure participates in myogenic vasoconstriction and which signaling pathways are involved in SK1/S1P-induced myogenic response under normal physiological conditions.

Methods and Results

We measured pressure-induced myogenic response, Ca2+ concentration, and 20 kDa myosin light chain phosphorylation (MLC20) in rabbit posterior cerebral arteries (PCAs). SK1 was expressed and activated by elevated transmural pressure in rabbit PCAs. Translocation of SK1 by pressure elevation was blocked in the absence of external Ca2+ and in the presence of mechanosensitive ion channel and voltage-sensitive Ca2+ channel blockers. Pressure-induced myogenic tone was inhibited in rabbit PCAs treated with sphingosine kinase inhibitor (SKI), but was augmented by treatment with NaF, which is an inhibitor of sphingosine-1-phosphate phosphohydrolase. Exogenous S1P further augmented pressure-induced myogenic responses. Pressure induced an increase in Ca2+ concentration leading to the development of myogenic tone, which was inhibited by SKI. Exogenous S1P further increased the pressure-induced increased Ca2+ concentration and myogenic tone, but SKI had no effect. Pressure- and exogenous S1P-induced myogenic tone was inhibited by pre-treatment with the Rho kinase inhibitor and NADPH oxidase inhibitors. Pressure- and exogenous S1P-induced myogenic tone were inhibited by pre-treatment with S1P receptor blockers, W146 (S1P1), JTE013 (S1P2), and CAY10444 (S1P3). MLC20 phosphorylation was increased when the transmural pressure was raised from 40 to 80 mmHg and exogenous S1P further increased MLC20 phosphorylation. The pressure-induced increase of MLC20 phosphorylation was inhibited by pre-treatment of arteries with SKI.

Conclusions

Our results suggest that the SK1/S1P pathway may play an important role in pressure-induced myogenic responses in rabbit PCAs under normal physiological conditions.  相似文献   

17.
Glioblastoma multiforme is an invasive primary brain tumor, which evades the current standard treatments. The invasion of glioblastoma cells into healthy brain tissue partly depends on the proteolytic and nonproteolytic activities of the plasminogen activator system proteins, including the urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1), and a receptor for uPA (uPAR). Here we show that sphingosine-1-phosphate (S1P) and the inflammatory mediator interleukin-1 (IL-1) increase the mRNA and protein expression of PAI-1 and uPAR and enhance the invasion of U373 glioblastoma cells. Although IL-1 enhanced the expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, down-regulation of SphK1 had no effect on the IL-1-induced uPAR or PAI-1 mRNA expression, suggesting that these actions of IL-1 are independent of S1P production. Indeed, the S1P-induced mRNA expression of uPAR and PAI-1 was blocked by the S1P(2) receptor antagonist JTE013 and by the down-regulation of S1P(2) using siRNA. Accordingly, the inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and Rho-kinase, two downstream signaling cascades activated by S1P(2), blocked the activation of PAI-1 and uPAR mRNA expression by S1P. More importantly, the attachment of glioblastoma cells was inhibited by the addition of exogenous PAI-1 or siRNA to uPAR, whereas the invasion of glioblastoma cells induced by S1P or IL-1 correlated with their ability to enhance the expression of PAI-1 and uPAR. Collectively, these results indicate that S1P and IL-1 activate distinct pathways leading to the mRNA and protein expression of PAI-1 and uPAR, which are important for glioblastoma invasiveness.  相似文献   

18.
Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment.  相似文献   

19.
20.
Lim KG  Sun C  Bittman R  Pyne NJ  Pyne S 《Cellular signalling》2011,23(10):1590-1595
Sphingosine kinase 2 (SK2) catalyses the conversion of sphingosine to the bioactive lipid sphingosine 1-phosphate (S1P). We report here, the stereospecific synthesis of an analogue of FTY720 called (R)-FTY720-OMe, which we show is a competitive inhibitor of SK2. (R)-FTY720-OMe failed to inhibit sphingosine kinase 1 activity, thereby demonstrating specificity for SK2. Prolonged treatment of HEK 293 cells with (R)-FTY720-OMe also induced a reduction in SK2 expression. In addition, (R)-FTY720-OMe inhibited DNA synthesis and prevented S1P-stimulated rearrangement of actin in MCF-7 breast cancer cells. These findings demonstrate that SK2 functions as a pro-survival protein and is involved in promoting actin rearrangement into membrane ruffles/lamellipodia in response to S1P in MCF-7 breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号