首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(5):385-391
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

2.
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

3.
—Fructose levels were determined in plasma and brain of 8- to 12-day-old mice at intervals after the injection of 30 mmol/kg intraperitoneally; controls received NaCl, 15 mmol/kg. In normal animals brain fructose increased very slowly despite a rapid rise in plasma levels (120 times the control value in 5 min). At 40 min the cerebral level was 1.54 ± 0.23 mmol/kg; the corresponding plasma level was 47.1 ± 4.8 mM. The data suggest that fructose can serve as a source of energy to the brain in times of critical need: during insulin hypoglycemia brain fructose increased to only 0.88 ± 0.05 mmol/kg during the same interval (40 min) despite plasma fructose values equal to those in control animals; also 30 s after cerebral ischemia (decapitation) brain fructose fell from a zero time value of 1.19 ± 0.09 mmol/kg (20 min after fructose injection) to 0.76 ± 0.06 mmol/kg (P= 0.005). Under both circumstances (hypoglycemia and ischemie anoxia) an apparent threshold concentration of fructose for utilization was observed—0.6–0.7 mmol/kg. The most likely explanation for this finding appears to be that this level of fructose was in the extracellular space of the brain. Hexokinase activity in brain homogenates of 8- to 12-day-old mice with fructose and ATP at concentrations found in vivo and during ischemie anoxia did not appear to be rate-limiting. We concluded that the major handicap to the use of fructose by the brain was the limited penetration of fructose from the blood to the brain.  相似文献   

4.
A method to monitor extracellular glucose in freely moving rats, based on intracerebral microdialysis coupled to an enzyme reactor is described. The dialysate is continuously mixed with a solution containing the enzymes hexokinase and glucose-6-phosphate dehydrogenase, and the fluorescence of NADPH formed enables the on-line registration of extracellular glucose. The method is applied to monitor changes in extracellular brain glucose during the infusion of glucose, electrically induced seizure, immobilization stress, and repetitive hypoxia. After glucose loading or after seizure, hippocampus dialysate glucose concentration was increased transiently. During immobilization, there was a short-lasting decrease and, thereafter, an increase in the extracellular hippocampus glucose. During repetitive hypoxia in rats with a unilaterally occluded carotid artery, the content of glucose of striatal dialysates followed closely changes in blood pressure. These results illustrate the usefulness of the method in studying changes in brain glucose concentrations under pathological and physiological conditions.  相似文献   

5.
A quantitative analysis of glutamate in brain dialysate was made by using an enzymatic cycling technique. This method made it possible to measure the concentration of glutamate in dialysate collected at 30-s intervals. Dialysates were collected from Mongolian gerbil hippocampus before, during, and after two 90-s ischemic insults at an interval of 5 min. An extracellular increase in levels of glutamate was already observed in samples collected during a 30-60 s period after the onset of each ischemia, and the levels of glutamate were maximal at the end of each period of ischemia (approximately a fourfold increase). The increased levels of glutamate rapidly returned almost to preischemic levels by 30 s of recirculation. This method will provide more precise information about temporal changes in the extracellular glutamate concentration in the brain during ischemia.  相似文献   

6.
Abstract: The aim of this study was to evaluate the influence of perfusion media with different glucose concentrations on dialysate levels of lactate, pyruvate, aspartate (Asp), and glutamate (Glu) under basal and hypoxic conditions in rat brain neocortex. Intracerebral microdialysis was performed with the rat under general anesthesia using bilateral probes (o.d. 0.3 mm; membrane length, 2 mm) perfused with artificial CSF containing 0.0 and 3.0 m M glucose, respectively. Basal dialysate levels were obtained 2 h after probe implantation in artificially ventilated animals. Dialysate levels of glucose were also measured for the two different perfusion fluids. The mean absolute extracellular concentration of glucose was estimated by a modification of the no-net-flux method to be 3.3 mmol/L, corresponding to an average in vivo recovery of 6% for glucose. Hypoxia was induced by lowering the inspired oxygen concentration to 3%. Hypoxia caused a disturbance of cortical electrical activity, evidenced by slower frequency and lower amplitudes on the electroencephalogram compared with prehypoxic conditions. This was associated with significant elevations of lactate, Asp, and Glu levels. There were no statistically significant differences in dialysate metabolite levels between the two perfusion fluids, during either normal or hypoxic conditions. We conclude that microdialysis with glucose-free perfusion fluid does not drain brain extracellular glucose in anesthetized rats to the extent that the dialysate lactate, pyruvate, Asp, and Glu levels during basal or hypoxic conditions are altered.  相似文献   

7.
Abstract: Neurochemical changes in the ventromedial hypothalamus (VMH) after a single intravenous injection of streptozotocin were examined, using in vivo brain microdialysis under free-moving conditions. Although streptozotocin-induced diabetes produced significant decreases in extracellular concentrations of noradrenaline (NA), serotonin (5-HT), and their metabolites in the VMH, the ratios of 3-methoxy-4-hydroxyphenylglycol/NA and 5-hydroxyindoleacetic acid (5-HIAA)/5-HT were increased. Experimental diabetes led to a pronounced increase in extracellular GABA, which correlated strongly with the decrease in dialysate levels of NA, and to a smaller extent with that of 5-HT. A modification of dopamine (DA) metabolism was induced in the VMH of diabetic rats, whereas there was no change in dialysate DA levels. Daily injections of insulin were able to restore their levels to normal in the areas tested in the microdialysis study. The equal increases in dialysate 5-HT and 5-HIAA and the better restoration of the 5-HIAA/5-HT ratio after insulin therapy indicate that serotonergic activity may depend on the levels of circulating insulin more than on noradrenergic activity. Circulating NA was reduced in streptozotocin-diabetic rats, suggesting that the diabetes-induced reduction in sympathetic activity is accompanied by decreases in NA, or 5-HT, or both, in the VMH.  相似文献   

8.
Abstract: Elevated brain concentrations of the neurotoxin and NMDA receptor agonist quinolinic acid (QUIN) have been demonstrated in portacaval-shunted (PCS) rats, a chronic hepatic encephalopathy (HE) model. Increased brain QUIN levels have also been shown in acute hyperammonemic rats. In the present study, the plasma and brain (neocortical) QUIN levels in chronic PCS rats were investigated. The study also included a single exogenous ammonium acetate (NH4Ac; 5.2 mmol/kg, i.p.) challenge to precipitate a reversible hepatic coma. Compared with sham-operated controls, chronic PCS rats exhibited decreased rather than increased plasma and brain QUIN levels. The plasma-to-brain QUIN ratio was not found to be altered. The NH4Ac administration induced coma in all of the PCS rats 20–25 min after the challenge, and this coma was resolved within 60–75 min. No relevant temporal relationship between changes in brain QUIN levels and the neurological status in the PCS rats was observed. Therefore, our results do not support the contention that increased brain QUIN levels per se are involved in the pathogenesis of HE.  相似文献   

9.
We report the measurement of D-beta-hydroxybutyrate (BHB) in the brains of six normal adult subjects during acute infusions of BHB. We used high field in vivo (1)H magnetic resonance (MR) spectroscopy in the occipital lobe in conjunction with an acute infusion protocol to elevate plasma BHB levels from overnight fasted levels (0.20 +/- 0.10 mM) to a steady state value of 2.12 +/- 0.30 mM. At this level of hyperketonemia, we determined a tissue BHB level of 0.24 +/- 0.04 mM. No increases in brain lactate levels were seen in these data. The concentrations of BHB and lactate were both considerably lower in comparison with previous data acquired in fasted adult subjects. This suggests that up-regulation of the monocarboxylic acid transporter occurs with fasting.  相似文献   

10.
1. Previous studies have suggested that elevated ketone levels are associated with increased survival time in rodents exposed to hypoxia. In this study the association between whole blood BHB (beta-hydroxybutyrate) and hypoxic survival time was investigated in hibernating and non-hibernating ground squirrels and in rats. 2. Non-hibernating ground squirrels and rats were exposed to hypoxia (4.5% O2). One hundred per cent of ground squirrels survived 1 hr of hypoxia vs 20% of rats. 3. Ketone levels were significantly higher in ground squirrels than rats during hypoxia, and rats surviving the longest had the highest ketone levels. 4. When hibernation was induced in ground squirrels there was a significant increase in beta-hydroxy-butyrate from 0.45 to 1.6 mM (P = 0.0005). 5. Ground squirrel heart mitochondrial respiratory control ratios and ATP synthesis rates indicated no preferential ketone utilization which might suggest a possible extramitochondrial role of BHB during hypoxia. 6. We conclude that elevated blood BHB levels are associated with increased hypoxic survival and they may have evolved in response to life-threatening hypoxia as experienced during hibernation.  相似文献   

11.
Levels of ascorbic acid (AA) in the plasma, brain, and adrenal gland of rats were determined after 15 min of hypoxia (PaO2 less than 25 mm Hg) and following asphyxia. In rabbits, AA plasma levels were followed up to 75 min of reoxygenation following 15 min of hypoxia of the same severity. A significant increase (approximately 70%) in AA levels was found in plasma of rats and rabbits after hypoxia and asphyxia. This increase was found to be transient, with a return to normal levels within 1 h after resumption of normal oxygenation. Pretreatment with dexamethasone reduced the increase in AA level in both rabbits and rats. Adrenalectomy in rats, performed 24 h before the experiment, abolished the response to hypoxia. Ascorbate levels in the cerebral cortex, hypothalamus, and adrenal gland of awake rats subjected to hypoxia or asphyxia were found to be the same as in normoxic rats. Our results suggest that the observed changes in plasma AA levels are probably mediated through adrenocorticotropic hormone and that the adrenal gland is the major source of ascorbate efflux into the circulation during oxygen deprivation.  相似文献   

12.
Glutamate is a major excitatory neurotransmitter in the mammalian central nervous system and initiates the events leading to ischemic brain damage. Glutamate receptor antagonists are being used to reduce neuronal damage observed after hypoxia and ischemia. The glutamate receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo-(a,d)-cyclohepten-5,10-imine maleate (MK-801) crosses the blood-brain barrier readily and produces a non-competitive use-dependent blockade of the N-methyl-D-aspartate subtype of glutamate receptor. The aim of this study was to investigate effects of MK-801 administered before and just after the onset of ischemia in rats on nitrite and cyclic guanosine monophosphate (cGMP) levels. Focal cerebral ischemia in rats was produced by permanent occlusion of right middle cerebral artery (MCAO). Nitrite and cGMP levels were measured in both cortex and cerebellum at 0, 10, and 60 min following MCAO. The same parameters were measured in rats treated with MK-801 (0.5 mg/kg, i.p.) 30 min before or just after MCAO. Ipsilateral cortical nitrite levels were increased relative to contralateral cortex after MCAO. No significant changes were observed in cerebellum. The cGMP concentrations in both sides of the cortex and cerebellum were increased at 10 and 60 min compared with 0 min values. cGMP level in the ipsilateral cortex was higher than contralateral cortex, whereas the opposite was found for the cerebellum. MK-801 treatment before or just after MCAO decreased significantly nitrite and cGMP production. Our data indicate that MK-801 treatment before or just after focal ischemia prevents the increase in NO and cGMP production.  相似文献   

13.
In this study we investigated the effects of Tenoxicam, a type 2 cyclooxygenase (COX-2) inhibitor, on brain damage induced by ischemia-reperfusion. Male Wistar rats (18-month old average) were anesthetized and submitted to ischemia occlusion of both common carotid arteries (BCAO) for 45 min. After 24 h of reperfusion, rats were decapitated and hippocampi removed for further assays. Animals were divided into sham-operated, ischemia, ischemia + Tenoxicam 2.5 mg/kg, and ischemia + Tenoxicam 10 mg/kg groups. Tenoxicam was administered intraperitoneally immediately after BCAO. Histological analyses show that ischemia produced significant striatal as well as hippocampal lesions which were reversed by the Tenoxicam treatment. Tenoxicam also significantly reduced, to control levels, the increased myeloperoxidase activity in hippocampus homogenates observed after ischemia. However, nitrite concentrations showed only a tendency to decrease in the ischemia + Tenoxicam groups, as compared to that of ischemia alone. On the other hand, hippocampal glutamate and aspartate levels were not altered by Tenoxicam. In conclusion, we showed that ischemia is certainly related to inflammation and to increased free radical production, and selective COX-2 inhibitors might be neuroprotective agents of potential benefit in the treatment of cerebral brain ischemia.  相似文献   

14.
Studies were performed to determine if the detoxification pathway of 1,3-butadiene (BD) through 3-butene-1,2-diol (BD-diol) is a major contributor to mutagenicity in BD-exposed mice and rats. First, female and male mice and rats (4-5 weeks old) were exposed by nose-only for 6h to 0, 62.5, 200, 625, or 1250 ppm BD or to 0, 6, 18, 24, or 36 ppm BD-diol primarily to establish BD and BD-diol exposure concentrations that yielded similar plasma levels of BD-diol, and then animals were exposed in inhalation chambers for 4 weeks to BD-diol to determine the mutagenic potency estimates for the same exposure levels and to compare these estimates to those reported for BD-exposed female mice and rats where comparable blood levels of BD-diol were achieved. Measurements of plasma levels of BD-diol (via GC/MS methodology) showed that (i) BD-diol accumulated in a sub-linear fashion during single 6-h exposures to >200 ppm BD; (ii) BD-diol accumulated in a linear fashion during single or repeated exposures to 6-18 ppm BD and then in a sub-linear fashion with increasing levels of BD-diol exposure; and (iii) exposures of mice and rats to 18 ppm BD-diol were equivalent to those produced by 200 ppm BD exposures (with exposures to 36 ppm BD-diol yielding plasma levels approximately 25% of those produced by 625 ppm BD exposures). Measurements of Hprt mutant frequencies (via the T cell cloning assay) showed that repeated exposures to 18 and 36 ppm BD-diol were significantly mutagenic in mice and rats. The resulting data indicated that BD-diol derived metabolites (especially, 1,2-dihydroxy-3,4-epoxybutane) have a narrow range of mutagenic effects confined to high-level BD (>or=200 ppm) exposures, and are responsible for nearly all of the mutagenic response in the rat and for a substantial portion of the mutagenic response in the mouse following high-level BD exposures.  相似文献   

15.
Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88?±?5.69 mmol/L vs. 14.79?±?5.84 mmol/L, p?<?0.05), while it was not different in diabetic rats after hypoxic treatment (13.14?±?5.77 mmol/L vs. 14.79?±?5.84 mmol/L, p?>?0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28?±?0.11 vs. 1.39?±?0.11, p?<?0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48?±?0.48 vs. 3.86?±?0.42, p?<?0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular glycogenesis may play a role in the underlying mechanism.  相似文献   

16.
Rats were given daily injections of choline, lithium or lithium plus choline for either 11 or 18 days and red cell choline, glycine and glutathione levels were measured using proton nuclear magnetic resonance spectroscopy. In addition, plasma choline, plasma lithium and red cell lithium levels were measured 4 hr after the last dosage. Choline (1 mmol/kg) alone increased plasma but not red cell choline concentrations. Lithium (0.94 mmol/kg) elevated red cell choline levels but did not affect plasma choline concentrations. In contrast, red cell choline levels were not elevated in rats treated with a higher dose of lithium (1.88 mmol/kg). When choline was given in addition to the lower dose of lithium, a similar accumulation of red cell choline was observed suggesting that the lithium-induced choline accumulation was not enhanced by a greater availability of free choline. No differences were detected in red cell glycine or glutathione levels between any of the treatment groups. Therefore, lithium produced a specific (dose-dependent) accumulation of choline in rat erythrocytes. However, the 100% increase observed in rats was not as marked as the increased red cell choline levels reported in patients maintained on lithium (8 to 10-fold). This discrepancy supports the concept that species differences exist in red cell choline transport or metabolism.  相似文献   

17.
Abstract: We examined the effects of orally administered 5'-cytidinediphosphocholine (CDP-choline) on arterial plasma choline and cytidine levels and on brain phospholipid composition in rats. Animals receiving a single oral dose of 100, 250, or 500 mg/kg showed peak plasma choline levels 6–8 h after drug administration (from 12 ± 1 to 17 ± 2, 19 ± 2, and 24 ± 2 µ M , respectively). The area under the plasma choline curve at >14 µ M , i.e., at a concentration that induces a net influx of choline into the brain, was significantly correlated with CDP-choline dose. In rats receiving 500 mg/kg this area was 2.3 times that of animals consuming 250 mg/kg, which in turn was 1.8 times that of rats receiving 100 mg/kg. Plasma cytidine concentrations increased 5.4, 6.5, and 15.1 times baseline levels, respectively, 8 h after each of the three doses. When the oral CDP-choline treatment was prolonged for 42 and 90 days, brain phosphatidylcholine concentrations increased significantly (by 22–25%; p < 0.05) in rats consuming 500 mg/kg/day. Brain phosphatidylethanolamine and phosphatidylserine concentrations also increased significantly under some experimental conditions; levels of other phospholipids were unchanged.  相似文献   

18.
Biochemical changes in the rat brain cholinergic system during and after 60 min of ischemia were studied using a four-vessel occlusion model. Extracellular acetylcholine (ACh) concentrations in the unanesthetized rat hippocampus markedly increased during ischemia and reached a peak (about 13.5 times baseline levels) at 5-10 min after the onset of ischemia. At 2-5 h after reperfusion, extracellular ACh concentrations were reduced to 64-72% of the levels of controls. ACh levels in the hippocampus, striatum, and cortex decreased significantly during ischemia and exceeded their control values just after reperfusion. A significant increase in hippocampal ACh level after 2 days of reperfusion and a decrease in [14C]ACh synthesis from [14C]glucose in hippocampal slices excised at 2 days after reperfusion were observed. The extracellular concentrations and tissue levels of choline markedly increased after ischemia. These results show that ACh is markedly released into the extracellular space in the hippocampus during ischemia, and they suggest that ACh synthesis is activated just after reperfusion and that cholinergic activity is reduced after 2-48 h of reperfusion in the hippocampus.  相似文献   

19.
Rainbow smelt (Osmerus mordax) were maintained in a long term acclimation study to elucidate temperature effects on the accumulation of trimethylamine oxide (TMAO) and to determine if the activity of trimethylamine oxidase (TMAoxi) plays a role in modulating the seasonally variable levels of TMAO. In the same experiment, the TMAO content was determined for several tissues at varying plasma TMAO concentrations. TMAO accumulation begins at 5-7 degrees C, well above that which might be normally associated with an antifreeze response. The plasma concentration reached a plateau of 20 mM as temperatures reached 0 degrees C. Plasma TMAO concentration drops to pre-accumulation levels, less than 5 mM, when fish are held at elevated temperature (8-11 degrees C) and increases when fish are chilled below ambient seawater temperatures. However, despite temperatures near or below 0 degrees C, plasma TMAO decreases after the winter season. Changes in TMAoxi activity do not correlate with TMAO levels, suggesting that the activity of this enzyme does not play a key role in regulating TMAO concentrations in smelt. For the first time in any teleost fish, tissue TMAO contents in liver, kidney, brain, and intestine were found to strongly correlate with plasma TMAO concentrations. For these tissues, the intracellular and extracellular concentration of TMAO appears to be approximately equal. Conversely, the heart and white muscle accumulate TMAO, and in the case of white muscle, intracellular concentration is maintained at a constant level of approximately 35 mmol/kg, despite fluctuating plasma concentrations over a range from 0 to over 25 mM.  相似文献   

20.
Abstract: We evaluated in rats with severe spinal cord compression at T8–9 the influence of methylprednisolone (MP) on lactic acidosis and extracellular amino acids, which may cause secondary, perifocal injuries of the cord. MP (30 mg/kg) was given intravenously 30 min before compression and hourly thereafter (15 mg/kg). Other rats with compression, given saline, served as controls. Samples from the extracellular fluid of one dorsal horn were collected by microdialysis and analyzed by HPLC. Microdialysis was performed for 1.5 h to establish basal levels. Samples were collected for 3 h after compression. MP-treated rats showed a reduction of dialysate lactic acid and arginine levels during the first 1–2 h after trauma. The mean dialysate levels of glutamate in MP-treated rats were lower than those of the controls, but the difference was not statistically significant. MP treatment did not influence dialysate levels of aspartate, glutamine, histidine, glycine, threonine, taurine, alanine, GABA, and tyrosine. Our study shows that MP has several effects, including reduced lactic acid formation, reduced levels of arginine (the substrate for nitric oxide production), and a trend toward decreased extracellular accumulation of the excitotoxic amino acid glutamate. We conclude that MP has the capacity to change the composition of the extracellular edema fluid after trauma to the spinal cord. These changes may counteract free radical formation and may be important mechanisms by which MP exerts its beneficial actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号