首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. RESULTS: In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. AVAILABILITY: EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/  相似文献   

2.
This article describes the integration of programs from the widely used CCP4 macromolecular crystallography package into a modern data flow visualization environment (application visualization system [AVS]), which provides a simple graphical user interface, a visual programming paradigm, and a variety of 1-, 2-, and 3-D data visualization tools for the display of graphical information and the results of crystallographic calculations, such as electron density and Patterson maps. The CCP4 suite comprises a number of separate Fortran 77 programs, which communicate via common file formats. Each program is encapsulated into an AVS macro module, and may be linked to others in a data flow network, reflecting the nature of many crystallo-graphic calculations. Named pipes are used to pass input parameters from a graphical user interface to the program module, and also to intercept line printer output, which can be filtered to extract graphical information and significant numerical parameters. These may be passed to downstream modules, permitting calculations to be automated if no user interaction is required, or giving the user the opportunity to make selections in an interactive manner.  相似文献   

3.
Future devices for electronic, photonic or other “intelligent” application involving (bio-) organic materials require nano-fabrication, -manipulation, -patterning and -functionalization techniques. Supramolecular assemblies, aggregates, small molecules and ions have to be controlled with regard to their structure, order and dynamic behaviour down to the molecular or even atomic level.

This contribution summarizes some of our activities aiming at a better understanding of the physical and chemical properties of functionalized and patterned surfaces. We focus on structure/order-property/function relations in such complex systems as interfaces and thin film architectures. Optical techniques (surface plasmon-spectroscopy) as well as surface analytical techniques (cyclic voltammetry and contact angle investigations) are introduced and demonstrated as powerful tools for the characterization of these interfaces and thin films.

Examples will be given covering self-assembly monolayers and molecular recognition—as well as complexation-reactions.  相似文献   


4.
Detailed structural, electronic and spectroscopic study of 4-methylthiadiazole-5-carboxylic acid, one of the simplest 1,2,3-thiadiazole derivatives has been performed using density functional theory at four different functionals (B3LYP, X3LYP, CAM-B3LYP and M06-2X). The two possible conformers and their dimeric forms have been investigated for the stability and hence for the calculation of molecular properties of the title compound. Vibrational analysis has been performed with the help of experimental FT-IR and FT-Raman spectra. NBO analysis has been performed to estimate the N–H—O=C hydrogen bond strength and to evaluate the intra and inter molecular charge transfer in the system. Intermolecular hydrogen-bond strength has also been computed using Atoms in Molecules (AIM) theory. To visualise spatial domain, key sites of electron transitions and electron density difference between ground as well as excited states, and their 2D and 3D plots have been computed. Solvent effect on the intermolecular hydrogen bonding have also been investigated using solvents of different polarities. Non-linear optical properties, molecular electrostatic potential surface map (MESP), thermodynamic potentials at different temperatures have also been computed and plotted.  相似文献   

5.
The enormous advances in our understanding of the progression of diseases at the molecular level have been supplemented by the new field of ‘molecular imaging’, which provides for in vivo visualization of molecular events at the cellular level in living organisms. Molecular imaging is a noninvasive assessment of gene and protein function, protein–protein interaction and/or signal transduction pathways in animal models of human disease and in patients to provide insights into molecular pathogenesis. Five major imaging techniques are currently available to assess the structural and functional alterations in vivo in small animals. These are (i) optical bioluminescence and fluorescence imaging techniques, (ii) radionuclide-based positron emission tomography (PET) and single photon emitted computed tomography (SPECT), (iii) X-ray-based computed tomography (CT), (iv) magnetic resonance imaging (MRI) and (v) ultrasound imaging (US). Functional molecular imaging requires an imaging probe that is specific for a given molecular event. In preclinical imaging, involving small animal models, the imaging probe could be an element of a direct (‘direct imaging’) or an indirect (‘indirect imaging’) event. Reporter genes are essential for indirect imaging and provide a general integrated platform for many different applications. Applications of multimodality imaging using combinations of bioluminescent, fluorescent and PET reporter genes in unified fusion vectors developed by us for recording events from single live cells to whole animals with high sensitivity and accurate quantification are discussed. Such approaches have immense potential to track progression of metastasis, immune cell trafficking, stem cell therapy, transgenic animals and even molecular interactions in living subjects.  相似文献   

6.
《Endocrine practice》2016,22(5):587-594
Objective: Adrenal venous sampling (AVS) is the only available method to distinguish bilateral from unilateral primary aldosteronism (PA). AVS has several drawbacks, so it is reasonable to avoid this procedure when the results would not affect clinical management. Our objective was to identify a clinical criterion that can reliably predict nonlateralized AVS as a surrogate for bilateral PA that is not treated surgically.Methods: A retrospective diagnostic cross-sectional study conducted at Slovenian national endocrine referral center included 69 consecutive patients (mean age 56 ± 8 years, 21 females) with PA who underwent AVS. PA was confirmed with the saline infusion test (SIT). AVS was performed sequentially during continuous adrenocorticotrophic hormone (ACTH) infusion. The main outcome measures were variables associated with nonlateralized AVS to derive a clinical prediction rule.Results: Sixty-seven (97%) patients had a successful AVS and were included in the statistical analysis. A total of 39 (58%) patients had nonlateralized AVS. The combined criterion of serum potassium ≥3.5 mmol/L, post-SIT aldosterone <18 ng/dL, and either no or bilateral tumor found on computed tomography (CT) imaging had perfect estimated specificity (and thus 100% positive predictive value) for bilateral PA, saving an estimated 16% of the patients (11/67) from unnecessary AVS. The best overall classification accuracy (50/67 = 75%) was achieved using the post-SIT aldosterone level <18 ng/dL alone, which yielded 74% sensitivity and 75% specificity for predicting nonlateralized AVS.Conclusions: Our clinical prediction criterion appears to accurately determine a subset of patients with bilateral PA who could avoid unnecessary AVS and immediately commence with medical treatment.Abbreviations:ACTH = adrenocorticotrophic hormoneARR = aldosterone-to-renin ratioAVS = adrenal venous samplingBP = blood pressureCT = computed tomographyeGFR = estimated glomerular filtration rateMR = magnetic resonancePA = primary aldosteronismPRA = plasma renin activityROC = receiver operating characteristicSIT = saline infusion test  相似文献   

7.
Acid volatile sulfide (AVS) is a natural agent in sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. Because of its influence on metal bioavailability, AVS has been proposed as a key normalization phase for the development of sediment quality criteria for metals. However, studies conducted primarily in marine and estuarine systems have shown that AVS concentrations can vary markedly both temporally and with (sediment) depth. In this study, AVS concentrations were measured monthly for 16 mo in several segments of sediment cores from three freshwater lakes: Caribou Lake, Fish Lake and Pike Lake in northeastern Minnesota, USA. The concentrations of AVS in cores from the three lakes varied inversely with sediment depth. AVS concentrations also varied seasonally by as much as two orders of magnitude and were directly correlated with changes in water temperature. The correlation between AVS and temperature likely was related both to changes in primary productivity and sediment microbial activity.  相似文献   

8.
The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.  相似文献   

9.
Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.  相似文献   

10.
We introduce a new and unified, compressed volumetric representation for macromolecular structures at varying feature resolutions, as well as for many computed associated properties. Important caveats of this compressed representation are fast random data access and decompression operations. Many computational tasks for manipulating large structures, including those requiring interactivity such as real-time visualization, are greatly enhanced by utilizing this compact representation. The compression scheme is obtained by using a custom designed hierarchical wavelet basis construction. Due to the continuity offered by these wavelets, we retain very good accuracy of molecular surfaces, at very high compression ratios, for macromolecular structures at multiple resolutions.  相似文献   

11.
12.
The discovery that the lipids constituting the plasma membrane are not randomly distributed, but instead are able to form laterally segregated lipid domains with different properties has given hints how the formation of such lipid domains influences and regulates many processes occurring at the plasma membrane. While in model systems these lipid domains can be easily accessed and their properties studied, it is still challenging to determine the properties of cholesterol rich lipid domains, the so called “Rafts”, in the plasma membrane of living cells due to their small size and transient nature. One promising technique to address such issues is fluorescence lifetime imaging (FLIM) microscopy, as spatially resolved images make the visualization of the lateral lipid distribution possible, while at the same time the fluorescence lifetime of a membrane probe yields information about the bilayer structure and organization of the lipids in lipid domains and various properties like preferential protein-protein interactions or the enrichment of membrane probes. This review aims to give an overview of the techniques underlying FLIM probes which can be applied to investigate the formation of lipid domains and their respective properties in model membrane and biological systems. Also a short technical introduction into the techniques of a FLIM microscope is given.  相似文献   

13.
ABSTRACT: BACKGROUND: Many biological processes are context-dependent or temporally specific. As a result, relationships between molecular constituents evolve across time and environments. While cutting-edge machine learning techniques can recover these networks, exploring and interpreting the rewiring behavior is challenging. Information visualization shines in this type of exploratory analysis, motivating the development of TVNViewer (http://sailing.cs.cmu.edu/tvnviewer), a visualization tool for dynamic network analysis. RESULTS: In this paper, we demonstrate visualization techniques for dynamic network analysis by using TVNViewer to analyze yeast cell cycle and breast cancer progression datasets. CONCLUSIONS: TVNViewer is a powerful new visualization tool for the analysis of biological networks that change across time or space.  相似文献   

14.
Proteomics seeks to monitor the global complement of proteins within a cell or organism and accompanying plasticity with respect to development and environment. The proteome is dynamic, the product of current and past gene expression, countless protein-protein interactions and selective proteolytic systems. Consequently the snapshot that a proteomic measurement yields must be integrated into proteome flux; the flow of nutrients and energy through the protein pathways that catalyze and drive life. The thylakoid membrane proteome poses many technical challenges for proteomics. Integral membrane proteins present awkward physico-chemical properties and the abundant photosynthetic machinery conceals much less abundant and no less important proteins such as channels and transporters that control the interaction of stroma and lumen. Discussed here are contrasting approaches to thylakoid proteomics; 'shotgun' techniques that provide throughput benefits by cleaving proteins into smaller more-manageable peptide chunks versus intact protein techniques that provide more detailed and accurate pictures. A two-dimensional chromatography system directly interfaced to electrospray-ionization mass spectrometry has allowed the direct visualization of large reaction-center proteins (up to 83 kDa) from both Photosystems 1 and 2 providing an attractive avenue for characterization of thylakoid membrane proteomes under different conditions because of the ability to resolve molecular heterogeneity resulting from post-translational modifications such as phosphorylation and oxidation. A high-resolution spectrum of Bacteriorhodopsin recorded to an accuracy of 8 ppm using Fourier-transform mass spectrometry demonstrates the first application of this technique to intact polytopic integral membrane proteins.  相似文献   

15.
Li RY  Zhang T  Fang HH 《Bioresource technology》2011,102(18):8445-8456
This paper reviews the application of molecular techniques in heterotrophic hydrogen production studies. Commonly used molecular techniques are introduced briefly first, including cloning-sequencing after polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), terminal-restriction fragment length polymorphism (T-RFLP), fluorescence in situ hybridization (FISH) and quantitative real-time PCR. Application of the molecular techniques in heterotrophic hydrogen production studies are discussed in details, focusing on identification of new isolates for hydrogen production, characterization of microbial compositions in bioreactors, monitoring microbial diversity variation, visualization of microbial distribution in hydrogen-producing granular sludge, and quantification of various microbial populations. Some significant findings in recent hydrogen production studies with the application of molecular techniques are discussed, followed by a research outlook of the heterotrophic biohydrogen field.  相似文献   

16.
Among the most difficult aspects of medicinal chemistry and biochemistry for the student to master are the three-dimensional (3D) nature of drugs and bio-organic substances and the interaction of these substances with 3D targets. Compounding this problem is the fact that such relationships are very difficult to illustrate in a lecture or discussion format. While skeletal molecular models serve a useful role in the learning process, the techniques of PC-based desktop molecular visualization provide a more powerful and effective alternative to the lecture format. These techniques can be implemented on standard MS-DOS PC hardware using one of the commonly available data projection systems. The approach has found considerable use in several areas, including the generation of computer-based lecture aids, the illustration of the molecular shapes of drugs and biochemical structures, the superposition and comparison of drug substances with common pharmacophores, and the illustration of enzyme-substrate interactions. Another related technique, molecular animation, has proven to be quite successful at illustrating the essentials of enzyme mechanisms in the classroom. The “film clips” resulting from this technique may have use beyond the classroom, and further work in this area is underway.  相似文献   

17.
We describe an integrated software system called Sculptor that combines visualization capabilities with molecular modeling algorithms for the analysis of multi-scale data sets. Sculptor features extensive special purpose visualization techniques that are based on modern GPU programming and are capable of representing complex molecular assemblies in real-time. The integration of graphics and modeling offers several advantages. The user interface not only eases the usually steep learning curve of pure algorithmic techniques, but it also permits instant analysis and post-processing of results, as well as the integration of results from external software. Here, we implemented an interactive peak-selection strategy that enables the user to explore a preliminary score landscape generated by the colors tool of Situs. The interactive placement of components, one at a time, is advantageous for low-resolution or ambiguously shaped maps, which are sometimes difficult to interpret by the fully automatic peak selection of colors. For the subsequent refinement of the preliminary models resulting from both interactive and automatic peak selection, we have implemented a novel simultaneous multi-body docking in Sculptor and Situs that softly enforces shape complementarities between components using the normalization of the cross-correlation coefficient. The proposed techniques are freely available in Situs version 2.6 and Sculptor version 2.0.  相似文献   

18.
Somites are the precursors of the vertebral column. They segment from the presomitic mesoderm (PSM) that is caudally located and newly generated from the tailbud. Somites form in synchrony on either side of the embryonic midline in a reiterative manner. A molecular clock that operates in the PSM drives this reiterative process. Genetic manipulation in mouse, chick and zebrafish has revealed that the molecular clock controls the activity of the Notch and WNT signaling pathways in the PSM. Disruption of the molecular clock impacts on somite formation causing abnormal vertebral segmentation (AVS). A number of dysmorphic syndromes manifest AVS defects. Interaction between developmental biologists and clinicians has lead to groundbreaking research in this area with the identification that spondylocostal dysostosis (SCD) is caused by mutation in Delta-like 3 (DLL3), Mesoderm posterior 2 (MESP2), and Lunatic fringe (LFNG); three genes that are components of the Notch signaling pathway. This review describes our current understanding of the somitic molecular clock and highlights how key findings in developmental biology can impact on clinical practice.  相似文献   

19.
Chemical conjugation with poly(ethylene glycols) (PEGs) are established procedures to facilitate solubilisation of hydrophobic compounds. Such techniques for PEGylation have been applied to polyhydroxybutyrate. ‘BioPEGylation’ of such polyhydroxyalkanoates (PHAs) to form natural–synthetic hybrids has been demonstrated through the addition of PEGs to microbial cultivation systems. The strategic addition of certain PEGs not only supports hybrid synthesis but may also provide a technique for control of PHA composition and molecular mass, and by extension, their physico-mechanical properties. PHA composition and molecular mass control by PEGs is dependent upon the polyethers’ molecular mass, loading in the cultivation system, time of introduction and microbial species. Hybrid characterisation studies are in their infancy, but results to date suggest that PHA–PEG hybrids have subtle, but significant, differences in their physiochemical and material properties as a consequence of the PEGylation.  相似文献   

20.
A visualization method for inter-fragment interaction energies (IFIEs) of biopolymers is presented on the basis of the fragment molecular orbital (FMO) method. The IFIEs appropriately illustrate the information about the interaction energies between the fragments consisting of amino acids, nucleotides and other molecules. The IFIEs are usually analyzed in a matrix form called an IFIE matrix. Analyzing the IFIE matrix, we detect important fragments for the function of biomolecular systems and quantify the strength of interaction energies based on quantum chemistry, including the effects of charge transfer, electronic polarization and dispersion force. In this study, by analyzing a protein-DNA complex, we report a visual representation of the IFIE matrix, a so-called IFIE map. We comprehensively examine what information the IFIE map contains concerning structures and stabilities of the protein-DNA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号