首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new web tool, PDB2MultiGIF (http://www.dkfz-heidelberg.de/spec/pdb2mgif/),which converts the topological information (atom types, 3D coordinates, molecular connectivity) of molecules (given in PDB format [1]) to a series of animated images (in GIF Format) [2] is described. The molecular visualisation program RASMOL [3] is used to generate the images.Electronic Supplementary Material available.  相似文献   

2.
Kosloff M  Kolodny R 《Proteins》2008,71(2):891-902
It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which "redundant" structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm).  相似文献   

3.
Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB‐related secondary database data, original web‐based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM‐Arc for computational structure models, and XRDa for raw X‐ray diffraction images, both of which promote open science in the structural biology community. During the COVID‐19 pandemic, PDBj has also started to provide feature pages for COVID‐19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID‐19 outreach content for high school students and teachers.  相似文献   

4.
Since Anfinsen demonstrated that the information encoded in a protein’s amino acid sequence determines its structure in 1973, solving the protein structure prediction problem has been the Holy Grail of structural biology. The goal of protein structure prediction approaches is to utilize computational modeling to determine the spatial location of every atom in a protein molecule starting from only its amino acid sequence. Depending on whether homologous structures can be found in the Protein Data Bank (PDB), structure prediction methods have been historically categorized as template-based modeling (TBM) or template-free modeling (FM) approaches. Until recently, TBM has been the most reliable approach to predicting protein structures, and in the absence of reliable templates, the modeling accuracy sharply declines. Nevertheless, the results of the most recent community-wide assessment of protein structure prediction experiment (CASP14) have demonstrated that the protein structure prediction problem can be largely solved through the use of end-to-end deep machine learning techniques, where correct folds could be built for nearly all single-domain proteins without using the PDB templates. Critically, the model quality exhibited little correlation with the quality of available template structures, as well as the number of sequence homologs detected for a given target protein. Thus, the implementation of deep-learning techniques has essentially broken through the 50-year-old modeling border between TBM and FM approaches and has made the success of high-resolution structure prediction significantly less dependent on template availability in the PDB library.  相似文献   

5.
The Saccharomyces Genome Database (SGD: http://genome-www.stanford.edu/Saccharomyces/) has recently developed new resources to provide more complete information about proteins from the budding yeast Saccharomyces cerevisiae. The PDB Homologs page provides structural information from the Protein Data Bank (PDB) about yeast proteins and/or their homologs. SGD has also created a resource that utilizes the eMOTIF database for motif information about a given protein. A third new resource is the Protein Information page, which contains protein physical and chemical properties, such as molecular weight and hydropathicity scores, predicted from the translated ORF sequence.  相似文献   

6.
By its purest definition the ultimate goal of structural genomics (SG) is the determination of the structures of all proteins encoded by genomes. Most of these will be obtained by homology modeling using the structures of a set of target proteins for experimental determination. Thanks to the open exchange of SG target information, we are able to analyze the sequences of the current target list to evaluate the extent of its coverage of protein sequence space. The presence of homologous sequences currently either in the Protein Data Bank (PDB) or among SG targets has been determined for each of the protein sequences in several organisms. In this way we are able to evaluate the coverage by existing or targeted structural data for the non-membranous parts of entire proteomes. For small bacterial proteomes such as that of H. influenzae almost all proteins have homologous sequences among SG targets or in the PDB. There is significantly lower coverage for more complex organisms, such as C. elegans. We have mapped the SG target list onto the ProtoMap clustering of protein sequences. Clusters occupied by SG targets represent over 150,000 protein sequences, which is approximately 44% of the total protein sequences classified by ProtoMap. The mapping of SG targets also enables an evaluation of the degree of overlap within the target list. An SG target typically occupies a ProtoMap cluster with more than six other homologous targets.  相似文献   

7.
Currently, optical coherence tomography (OCT), is not capable of obtaining molecular information often crucial for identification of disease. To enable molecular imaging with OCT, we have further developed a technique that harnesses transient changes in light absorption in the sample to garner molecular information. A Fourier‐domain Pump‐Probe OCT (PPOCT) system utilizing a 532 nm pump and 830 nm probe has been developed for imaging hemoglobin. Methylene blue, a biological dye with well‐know photophysics, was used to characterize the system before investigating the origin of the hemoglobin PPOCT signal. The first in vivo PPOCT images were recorded of the vasculature in Xenopus laevis. The technique was shown to work equally well in flowing and nonflowing vessels. Furthermore, PPOCT was compared with other OCT extensions which require flow, such as Doppler OCT and phase‐variance OCT. PPOCT was shown to better delineate tortuous vessels, where nodes often restrict Doppler and phase‐variance reconstruction. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
This paper presents a computational model to address one prominent psychological behavior of human beings to recognize images. The basic pursuit of our method can be concluded as that differences among multiple images help visual recognition. Generally speaking, we propose a statistical framework to distinguish what kind of image features capture sufficient category information and what kind of image features are common ones shared in multiple classes. Mathematically, the whole formulation is subject to a generative probabilistic model. Meanwhile, a discriminative functionality is incorporated into the model to interpret the differences among all kinds of images. The whole Bayesian formulation is solved in an Expectation-Maximization paradigm. After finding those discriminative patterns among different images, we design an image categorization algorithm to interpret how these differences help visual recognition within the bag-of-feature framework. The proposed method is verified on a variety of image categorization tasks including outdoor scene images, indoor scene images as well as the airborne SAR images from different perspectives.  相似文献   

9.
Toll-like receptors (TLRs) play a key role in the innate immune system. TLRs recognize pathogen-associated molecular patterns and initiate an intracellular kinase cascade to induce an immediate defensive response. During recent years TLRs have become the focus of tremendous research interest. A central repository for the growing amount of relevant TLR sequence information has been created. Nevertheless, structural motifs of most sequenced TLR proteins, such as leucine-rich repeats (LRRs), are poorly annotated in the established databases. A database that organizes the structural motifs of TLRs could be useful for developing pattern recognition programs, structural modeling and understanding functional mechanisms of TLRs. We describe TollML, a database that integrates all of the TLR sequencing data from the NCBI protein database. Entries were first divided into TLR families (TLR1-23) and then semi-automatically subdivided into three levels of structural motif categories: (1) signal peptide (SP), ectodomain (ECD), transmembrane domain (TD) and Toll/IL-1 receptor (TIR) domain of each TLR; (2) LRRs of each ECD; (3) highly conserved segment (HCS), variable segment (VS) and insertions of each LRR. These categories can be searched quickly using an easy-to-use web interface and dynamically displayed by graphics. Additionally, all entries have hyperlinks to various sources including NCBI, Swiss-Prot, PDB, LRRML and PubMed in order to provide broad external information for users. The TollML database is available at .  相似文献   

10.
Fluorescence microscopy is the primary tool for studying complex processes inside individual living cells. Technical advances in both molecular biology and microscopy have made it possible to image cells from many genetic and environmental backgrounds. These images contain a vast amount of information, which is often hidden behind various sources of noise, convoluted with other information and stochastic in nature. Accessing the desired biological information therefore requires new tools of computational image analysis and modeling. Here, we review some of the recent advances in computational analysis of images obtained from fluorescence microscopy, focusing on bacterial systems. We emphasize techniques that are readily available to molecular and cell biologists but also point out examples where problem-specific image analyses are necessary. Thus, image analysis is not only a toolkit to be applied to new images but also an integral part of the design and implementation of a microscopy experiment.  相似文献   

11.
β转角作为一种蛋白质二级结构类型在蛋白质折叠、蛋白质稳定性、分子识别等方面具有重要作用.现有的β转角预测方法,没有将PDB等结构数据库中先前存在的同源序列的结构信息映射到待预测的蛋白质序列上.PDB存储的结构已超过70 000,因此对一条新确定的序列,有较大可能性从PDB中找到其同源序列.本文融合PDB中提取的同源结构信息(对每一待测序列,仅使用先于该序列存储于PDB中的同源信息)与NetTurnP预测,提出了一种新的β转角预测方法BTMapping,在经典的BT426数据集和本文构建的数据集EVA937上,以马修斯相关系数表示的预测精度分别为0.56、0.52,而仅使用NetTurnP的为0.50、0.46,以Qtotal表示的预测精度分别为81.4%、80.4%,而仅使用NetTurnP的为78.2%、77.3%.结果证实同源结构信息结合先进的β转角预测器如NetTurnP有助于改进β转角识别.BTMapping程序及相关数据集可从http://www.bio530.weebly.com获得.  相似文献   

12.
We report the performance of the protein docking prediction pipeline of our group and the results for Critical Assessment of Prediction of Interactions (CAPRI) rounds 38-46. The pipeline integrates programs developed in our group as well as other existing scoring functions. The core of the pipeline is the LZerD protein-protein docking algorithm. If templates of the target complex are not found in PDB, the first step of our docking prediction pipeline is to run LZerD for a query protein pair. Meanwhile, in the case of human group prediction, we survey the literature to find information that can guide the modeling, such as protein-protein interface information. In addition to any literature information and binding residue prediction, generated docking decoys were selected by a rank aggregation of statistical scoring functions. The top 10 decoys were relaxed by a short molecular dynamics simulation before submission to remove atom clashes and improve side-chain conformations. In these CAPRI rounds, our group, particularly the LZerD server, showed robust performance. On the other hand, there are failed cases where some other groups were successful. To understand weaknesses of our pipeline, we analyzed sources of errors for failed targets. Since we noted that structure refinement is a step that needs improvement, we newly performed a comparative study of several refinement approaches. Finally, we show several examples that illustrate successful and unsuccessful cases by our group.  相似文献   

13.
Although Alzheimer's Abeta peptide has been shown to form beta-sheet structure, a high-resolution molecular structure is still unavailable to date. A search for a sequence neighbor using Abeta(10-42) as the query in the Protein Data-Bank (PDB) revealed that an RNA binding protein, AF-Sm1 from Archaeoglobus fulgidus (PDB entry: 1i4k chain Z), shared 36% identical residues. Using AF-Sm1 as a template, we built a molecular model of Abeta(10-42) by applying comparative modeling methods. The model of Abeta(10-42) contains an antiparallel beta-sheet formed by residues 16-23 and 32-41. Hydrophobic surface constituted by residues 17-20 (LVFF) separates distinctly charged regions. Residues that interact with RNA in the AF-Sm1 crystal structure were found to be conserved in Abeta. Using a native gel we demonstrate for the first time that RNA can interact with Abeta and selectively retard the formation of fibrils or higher-order oligomers. We hypothesize that in a similar fashion to AF-Sm1, RNA interacts with Abeta in the beta-hairpin (beta-turn-beta) structure and prevents fibril formation.  相似文献   

14.
In cases where the structure of a single protein is represented by an ensemble of conformations, there is often a need to determine the common features and to choose a "representative" conformation. This occurs, for example, with structures determined by NMR spectroscopy, analysis of the trajectory from a molecular dynamics simulation, or an ensemble of structures produced by comparative modeling. We reported previously automatic methods for (1) defining the atoms with low spatial variance across an ensemble (i.e., the "core" atoms) and the domains in which these atoms lie, and (2) clustering an ensemble into conformationally related subfamilies. To extend the utility of these methods, we have developed a freely available server on the World Wide Web at http:/(/)neon.chem.le.ac.uk/olderado/. This (1) contains an automatically generated database of representative structures, core atoms, and domains determined for 449 ensembles of NMR-derived protein structures in the Protein Data Bank (PDB) in May 1997, and (2) allows the user to upload a PDB-formatted file containing the coordinates of an ensemble of structures. The server returns in real time: (1) information on the residues constituting domains: (2) the structures that constitute each conformational subfamily; and (3) an interactive java-based three-dimensional viewer to visualise the domains and clusters. Such information is useful, for example, when selecting conformations to be used in comparative modeling and when choosing parts of structures to be used in molecular replacement. Here we describe the OLDERADO server.  相似文献   

15.
PDBsum: summaries and analyses of PDB structures   总被引:10,自引:2,他引:8  
  相似文献   

16.
As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved. Previous evidence shows that the human visual system accounts for the distance the observer has walked and the separation of the eyes when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.  相似文献   

17.
MOTIVATION: Protein interactions provide an important context for the understanding of function. Experimental approaches have been complemented with computational ones, such as PSIMAP, which computes domain-domain interactions for all multi-domain and multi-chain proteins in the Protein Data Bank (PDB). PSIMAP has been used to determine that superfamilies occurring in many species have many interaction partners, to show examples of convergent evolution through shared interaction partners and to uncover complexes in the interaction map. To determine an interaction, the original PSIMAP algorithm checks all residue pairs of any domain pair defined by classification systems such as SCOP. The computation takes several days for the PDB. The computation of PSIMAP has two shortcomings: first, the original PSIMAP algorithm considers only interactions of residue pairs rather than atom pairs losing information for detailed analysis of contact patterns. At the atomic level the original algorithm would take months. Second, with the superlinear growth of PDB, PSIMAP is not sustainable. RESULTS: We address these two shortcomings by developing a family of new algorithms for the computation of domain-domain interactions based on the idea of bounding shapes, which are used to prune the search space. The best of the algorithms improves on the old PSIMAP algorithm by a factor of 60 on the PDB. Additionally, the algorithms allow a distributed computation, which we carry out on a farm of 80 Linux PCs. Overall, the new algorithms reduce the computation at atomic level from months to 20 min. The combination of pruning and distribution makes the new algorithm scalable and sustainable even with the superlinear growth in PDB.  相似文献   

18.
Petri nets are a discrete event simulation approach developed for system representation, in particular for their concurrency and synchronization properties. Various extensions to the original theory of Petri nets have been used for modeling molecular biology systems and metabolic networks. These extensions are stochastic, colored, hybrid and functional. This paper carries out an initial review of the various modeling approaches based on Petri net found in the literature, and of the biological systems that have been successfully modeled with these approaches. Moreover, the modeling goals and possibilities of qualitative analysis and system simulation of each approach are discussed.  相似文献   

19.
A new series of synthetic flavones, thioflavones, and flavanones has been synthesized and evaluated as potential inhibitors of monoamine oxidase isoforms (MAO-A and -B). The most active series is the flavanone one with higher selective inhibitory activity against MAO-B. Some of these flavanones (mainly the most effective) have been separated and tested as single enantiomers. In order to investigate the MAOs recognition of the most active and selective compounds, a molecular modeling study has been performed using available Protein Data Bank (PDB) structures as receptor models for docking experiments.  相似文献   

20.
Docking of hydrophobic ligands with interaction-based matching algorithms   总被引:3,自引:0,他引:3  
MOTIVATION: Matching of chemical interacting groups is a common concept for docking and fragment placement algorithms in computer-aided drug design. These algorithms have been proven to be reliable and fast if at least a certain number of hydrogen bonds or salt bridges occur. However, the algorithms typically run into problems if hydrophobic fragments or ligands should be placed. In order to dock hydrophobic fragments without significant loss of computational efficiency, we have extended the interaction model and placement algorithms in our docking tool FlexX. The concept of multi-level interactions is introduced into the algorithms for automatic selection and placement of base fragments. RESULTS: With the multi-level interaction model and the corresponding algorithmic extensions, we were able to improve the overall performance of FlexX significantly. We tested the approach with a set of 200 protein-ligand complexes taken from the Brookhaven Protein Data Bank (PDB). The number of test cases which can be docked within 1.5 A RMSD from the crystal structure can be increased from 58 to 64%. The performance gain is paid for by an increase in computation time from 73 to 91 s on average per protein-ligand complex. AVAILABILITY: The FlexX molecular docking software is available for UNIX platforms IRIX, Solaris and Linux. See http://cartan.gmd.de/FlexX for additional information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号