首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of carbonylcyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP) with human serum albumin (HSA) and human transferrin (HTF) was investigated using multiple spectroscopy, molecular modeling, zeta‐potential and conductometry measurements of aqueous solutions at pH 7.4. The fluorescence, UV/vis and polarization fluorescence spectroscopy data disclosed that the drug–protein complex formation occurred through a remarkable static quenching. Based on the fluorescence quenching, two sets of binding sites with distinct affinities for FCCP existed in the two proteins. Steady‐state and polarization fluorescence analysis showed that there were more affinities between FCCP and HSA than HTF. Far UV‐CD and synchronous fluorescence studies indicated that FCCP induced more structural changes on HSA. The resonance light scattering (RLS) and zeta‐potential measurements suggested that HTF had a greater resistance to drug aggregation, whereas conductometry measurements expressed the presence of free ions improving the resistance of HSA to aggregation. Thermodynamic measurements implied that a combination of electrostatic and hydrophobic forces was involved in the interaction between FCCP with both proteins. The phase diagram plots indicated that the presence of second binding site on HSA and HTF was due to the existence of intermediate structures. Site marker competitive experiments demonstrated that FCCP had two distinct binding sites in HSA which were located in sub‐domains IIA and IIIA and one binding site in the C‐lobe of HTF as confirmed by molecular modeling. The obtained results suggested that both proteins could act as drug carriers, but that the HSA potentially had a higher capacity for delivering FCCP to cancerous tissues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This study describes the eco‐friendly, low‐cost and room‐temperature synthesis of gold nanoparticles from Musa balbisiana leaf extract, which acts as both reducing and stabilizing agent, and characterized by ultraviolet?visible (UV–vis) light spectroscopy, fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FE‐SEM), analytical transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDAX) and dynamic light scattering (DLS) instruments. These nanoparticles showed an average diameter of 33.83 ± 3.39 nm, which was confirmed from the size distribution histogram. The bactericidal activity of these nanoparticles was confirmed using bacteria Escherichia coli and Staphylococcus aureus at 1 and 2 nM minimum inhibitory concentrations, respectively. The interaction between nanoparticles and human serum albumin (HSA) was investigated, as this plays significant roles in biological systems. The nature of interaction, binding parameters and structural variation of HSA in the presence of these nanoparticles have been evaluated using several useful spectroscopic approaches such as UV–vis, FTIR, time‐resolved and steady‐state fluorescence, and circular dichroism in addition to the measurement of zeta potential. This interaction study revealed that static quenching occurs in this process with minimal alteration in the secondary structure, but the native structure of HSA remained unaltered. The binding constant and thermodynamic parameters of this interaction process were also evaluated.  相似文献   

3.
The interactions between estradiol and two carrier proteins, i.e. human serum albumin (HSA) and holo-transferrin (HTF) in aqueous solution at pH = 7.4 were studied by three-dimensional fluorescence emission spectroscopy, isothermal titration calorimetry (ITC), zeta-potential, resonance light-scattering and molecular modeling. Extensive fluorescence quenching was observed throughout the interaction between the drug and both proteins. Moreover, conformational changes were determined by observing the rearrangement of Trp residues during binding of estradiol with HSA and HTF at different concentrations. ITC experiments revealed that, in the presence of estradiol, both van der Waals forces and hydrogen bonding became predominant. In addition, other binding parameters such as enthalpy and entropy changes were determined by the zeta potential method. Molecular modeling suggested that estradiol was situated within sub-domain IB sited in the hydrophobic cluster in Site I, whereas the drug was located in the N-terminal of HTF where it was hydrogen bonded with Ala 670.  相似文献   

4.

Background

Previous studies on the use of SO2 and CO2 as impregnating agent for sugar cane bagasse steam treatment showed comparative and promising results concerning the cellulose enzymatic hydrolysis and the low formation of the inhibitors furfural and hydroxymethylfurfural for the use of CO2 at 205°C/15 min or SO2 at 190°C/5 min. In the present study sugar cane bagasse materials pretreated as aforementioned were analyzed by scanning and transmission electron microscopy (SEM and TEM), X-Ray Diffraction (XRD) and Infrared (FTIR spectroscopy) aiming a better understanding of the structural and chemical changes undergone by the pretreated materials.

Results

SEM and TEM data showed that the structural modifications undergone by the pretreatment with CO2 were less pronounced in comparison to that using SO2, which can be directly related to the combined severity of each pretreatment. According to XRD data, untreated bagasse showed, as expected, a lower crystallinity index (CI = 48.0%) when compared to pretreated samples with SO2 (CI = 65.5%) or CO2 (CI = 56.4%), due to the hemicellulose removal of 68.3% and 40.5%, respectively. FTIR spectroscopy supported SEM, TEM and XRD results, revealing a more extensive action of SO2.

Conclusions

The SEM, TEM, XRD and FTIR spectroscopy techniques used in this work contributed to structural and chemical analysis of the untreated and pretreated bagasse. The images from SEM and TEM can be related to the severity of SO2 pretreatment, which is almost twice higher. The crystallinity index values obtained from XRD showed that pretreated materials have higher values when compared with untreated material, due to the partial removal of hemicellulose after pretreatment. FTIR spectroscopy supported SEM, TEM and XRD results. CO2 can actually be used as impregnating agent for steam pretreatment, although the present study confirmed a more extensive action of SO2.  相似文献   

5.
The binding of ZnO nanoparticles (NPs) and caffeic acid (CFA) was investigated using fluorescence quenching, UV/vis absorption spectrscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) at different temperatures. The study results indicated fluorescence quenching between ZnO NPs and CFA rationalized in terms of a static quenching mechanism or the formation of non‐fluorescent CFA–ZnO. From fluorescence quenching spectral analysis, the binding constant (Ka), number of binding sites (n) and thermodynamic properties were determined. Values of the quenching (KSV) and binding (Ka) constants decrease with increasing temperature and the number of binding sites n = 2. The thermodynamic parameters determined using Van't Hoff equation indicated that binding occurs spontaneously involving the hydrogen bond, and van der Waal's forces played a major role in the reaction of ZnO NPs with CFA. The FTIR, TEM and DLS measurements also indicated differences in the structure, morphology and size of CFA, ZnO NPs and their corresponding CFA–ZnO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The structure of teleost scales from snakehead Channa argus was investigated using thermogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive analysis of X-rays (EDAX), Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD). Thermal treatment of fish scales indicates that the fibrillary plate is partially calcified. SEM shows two kinds of scale denticles, arranged along the circuli in the anterior field and the lateral fields, respectively. TEM indicates the stratum laxum with abundant fibrils, chromatophores and capillary blood vessels within the scale covering, and shows the fibrillary plate as an 'orthogonal plywood structure' of stratified lamellae, consisting of 80–100 nm diameter collagen fibres co-aligned in individual lamellae and alternated by c. 90° of the fibre alignment between adjacent lamellae. EDAX, FTIR and XRD show that the mineral phase of the scales is a carbonated hydroxyapatite with a Ca:P molar ratio of 1·85.  相似文献   

7.
A simple general strategy was successfully developed for the preparation of magnetic–luminescent multifunctional nanocomposites by incorporating fluorescent (pyrene) and magnetic (Fe3O4) components simultaneously into a poly(styrene‐co‐methacrylic acid) [poly(St‐co‐MAA)] copolymer matrix. The nanospheres so prepared were characterized using scanning electron microscopy (SEM), powder X‐ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The prepared magnetic–fluorescent inorganic–organic nanocomposites have excellent magnetic and photoluminescent properties. They can be used in magnetic separation of trace amounts of sample, fluorescence detection and imaging applications, including magnetic resonance imaging (MRI) and fluorescence imaging. The fluorescence quenching of the nanospheres in the presence of different amounts of Cu2+ ions was also investigated. Under optimal experimental conditions, the relative fluorescence intensity of the composite nanosphere colloidal solution is proportional to the concentration of Cu2+ ions, which indicates that these multifunctional nanocomposites can be used for the magnetic separation and fluorescence detection of Cu2+ ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the interaction between 2,4-dinitrophenol (DNP) with the two drug carrier proteins – human serum albumin (HSA) and human holo transferrin (HTF). Hence, binding characteristics of DNP to HSA and HTF were analyzed by spectroscopic and molecular modeling techniques. Based on results obtained from fluorescence spectroscopy, DNP had a strong ability to quench the intrinsic fluorescence of HSA and HTF through a static quenching procedure. The binding constant and the number of binding sites were calculated as 2.3?×?1011?M?1 and .98 for HSA, and 1.7?×?1011?M?1 and 1.06 for HTF, respectively. In addition, synchronous fluorescence results showed that the microenvironment of Trp had a slight tendency of increasing its hydrophobicity, whereas the microenvironment of the Tyr residues of HSA did not change and that of HTF showed a significant trend (red shift of about 4?nm) of an increase in polarity. The distance between donor and acceptor was obtained by the Förster energy according to fluorescence resonance energy transfer, and was found to be 3.99 and 3.72?nm for HSA and HTF, respectively. The critical induced aggregation concentration (CCIAC) of the drug on both proteins was determined and confirmed by an inflection point of the zeta potential behavior. Circular dichroism data revealed that the presence of DNP caused a decrease of the α-helical content of HSA and HTF, and induced a remarkable mild denaturation of both proteins. The molecular modeling data confirmed our experimental results. This study is deemed useful for determining drug dosage.  相似文献   

9.
In this paper, the binding properties of teicoplanin and vancomycin to bovine serum albumin (BSA) were investigated using fluorescence quenching, synchronous fluorescence, Fourier transform infrared (FTIR), circular dichroism (CD) and UV–vis spectroscopic techniques and molecular docking under simulative physiological conditions. The results obtained from fluorescence quenching data revealed that the drug–BSA interaction altered the conformational structure of BSA. Meanwhile, the 3D fluorescence, CD, FTIR and UV–vis data demonstrated that the conformation of BSA was slightly altered in the presence of teicoplanin and vancomycin, with different reduced α‐helical contents. The binding distances for the drug–BSA system were provided by the efficiency of fluorescence resonance energy transfer (FRET). Furthermore, the thermodynamic analysis implied that hydrogen bond and van der Waals' forces were the main interaction for the drug–BSA systems, which agreed well with the results from the molecular modeling study. The results obtained herein will be of biological significance in future toxicological and pharmacological investigation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Nanostructured polymer–semiconductor hybrid materials such as ZnS–poly(vinyl alcohol) (ZnS–PVA), ZnS–starch and ZnS–hydroxypropylmethyl cellulose (Zns–HPMC) are synthesized by a facile aqueous route. The obtained nanocomposites are characterized using various techniques such as X‐ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/vis spectroscopy and photoluminescence (PL). XRD studies confirm the zinc blende phase of the nanocomposites and indicate the high purity of the samples. SEM studies indicate small nanoparticles clinging to the surface of a bigger particle. The Energy Dispersive Analysis by X‐rays (EDAX) spectrum reveals that the elemental composition of the nanocomposites consists primarily of Zn:S. FTIR studies indicate that the polymer matrix is closely associated with ZnS nanoparticles. The large number of hydroxyl groups in the polymer matrix facilitates the complexation of metal ions. The absorption spectra of the specimens show a blue shift in the absorption edge. The spectrum reveals an absorption edge at 320, 310 and 325 nm, respectively. PL of nanocomposites shows broad peaks in the violet–blue region (420–450 nm). The emission intensity changes with the nature of capping agent. The PL intensity of ZnS–HPMC nanocomposites is found to be highest among the studied nanocomposites. The results clearly indicate that hydroxyl‐functionalized HPMC is much more effective at nucleating and stabilizing colloidal ZnS nanoparticles in aqueous suspensions compared with PVA and starch. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Here, Tagetes erecta leaves extract mediated silver nanopartices (te-SNPs) were synthesized. This synthesis process was simple, one step and eco-friendly. The te-SNPs were characterized by various spectroscopic instruments such as ultraviolet visible (UV–vis), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM) with energy Dispersive X-ray Spectroscopy (EDS). These te-SNPs showed the effective bactericidal activity against Escherichia coli and Staphylococcus aureus. The interaction of te-SNPs with human serum albumin (HSA) was evaluated by UV–vis absorption, fluorescence (FL), time resolved fluorescence (TRF), DLS and circular dichroism (CD) study. TRF and temperature dependant study suggested that the interaction process followed the dynamic quenching mechanism. The stern-volmer quenching constants (KSV) were obtained as 1.36 × 107, 1.51 × 107 and 1.94 × 107 M−1at 288, 298 and 308 K respectively. The thermodynamic parameters were also evaluated and this result suggested that the interaction was spontaneous, and the hydrophobic forces played the most important role for the interaction process. In addition, CD spectra proved minute alteration of secondary structure of HSA upon interaction with the te-SNPs.  相似文献   

12.
Erbium (Er) (0.5, 1.0 and 1.5 wt%)‐doped CaZrO3 nanophosphors were synthesized by the sol–gel method using poly(vinyl alcohol) as the chelating agent. Their structural and photoluminescence properties were studied using X‐ray diffraction (XRD), field emission scanning electron microscopy–energy dispersive spectroscopy (FESEM‐EDS), transmission electron microscopy (TEM), photoluminescence and Fourier transform infrared spectroscopy (FTIR). The XRD patterns of the samples confirm that nanoscale crystallite sizes. Agglomeration of the samples was observed using field emission scanning electron microscopy images. Energy dispersive spectroscopy measurements confirmed the existence of Ca, Zr, O and Er in the samples. Average particle sizes for the samples were calculated from transmission electron microscopy images. FTIR spectra clearly show characteristic absorption bands related to the metal oxides, as well as some other organic molecules. The photoluminescence spectra show bands in the green region. The Commission International de l'Eclairage coordinates were calculated and found to be in green region.  相似文献   

13.
Azzam F  Heux L  Putaux JL  Jean B 《Biomacromolecules》2010,11(12):3652-3659
The grafting of thermosensitive amine-terminated statistical polymers onto the surface of cellulose nanocrystals (CNCs) was achieved by a peptidic coupling reaction, leading to unusual properties like colloidal stability at high ionic strength, surface activity, and thermoreversible aggregation. We have used a large variety of experimental techniques to investigate the properties of the polymer-decorated CNCs at different length-scales and as a function of the different reaction parameters. A high grafting density could be obtained when the reaction was performed in DMF rather than water. Infrared and solid-state NMR spectroscopy data unambiguously demonstrated the covalent character of the bonding between the CNCs and the macromolecules, whereas TEM images showed a preserved individualized character of the modified objects. Dynamic light scattering and zeta potential measurements were also consistent with individual nanocrystals decorated by a shell of polymer chains. Surface tension measurements revealed that CNCs became surface-active after the grafting of thermosensitive amines. Decorated CNCs were also stable against high electrolyte concentrations. A thermoreversible aggregation was also observed, which paves the way for the design of stimuli-responsive biobased nanocomposite materials.  相似文献   

14.
Green synthesis of selenium nanoparticles (SeNPs) was achieved by a simple biological procedure using the reducing power of fenugreek seed extract. This method is capable of producing SeNPs in a size range of about 50–150 nm, under ambient conditions. The synthesized nanoparticles can be separated easily from the aqueous sols by a high-speed centrifuge. These selenium nanoparticles were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elemental analysis by X-ray fluorescence spectrometer (XRF). Nanocrystalline SeNPs were obtained without post-annealing treatment. FTIR spectrum confirms the presence of various functional groups in the plant extract, which may possibly influence the reduction process and stabilization of nanoparticles. The cytotoxicity of SeNPs was assayed against human breast-cancer cells (MCF-7). It was found that SeNPs are able to inhibit the cell growth by dose-dependent manner. In addition, combination of SeNPs and doxorubicin shows better anticancer effect than individual treatments.  相似文献   

15.
The switchgrass (SG) samples pretreated by cellulose solvent‐ and organic solvent‐based lignocellulose fractionation were characterized by enzymatic hydrolysis, substrate accessibility assay, scanning electron microscopy, X‐ray diffraction (XRD), cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FTIR). Glucan digestibility of the pretreated SG was 89% at hour 36 at one filter paper unit of cellulase per gram of glucan. Crystallinity index (CrI) of pure cellulosic materials and SG before and after cellulose solvent‐based pretreatment were determined by XRD and NMR. CrI values varied greatly depending on measurement techniques, calculation approaches, and sample drying conditions, suggesting that the effects of CrI data obtained from dried samples on enzymatic hydrolysis of hydrated cellulosic materials should be interpreted with caution. Fast hydrolysis rates and high glucan digestibilities for pretreated SG were mainly attributed to a 16.3‐fold increase in cellulose accessibility to cellulase from 0.49 to 8.0 m2/g biomass, because the highly ordered hydrogen‐bonding networks in cellulose fibers of biomass were broken through cellulose dissolution in a cellulose solvent, as evidenced by CP/MAS 13C‐NMR and FTIR. Biotechnol. Bioeng. 2011; 108:521–529. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Abstract

Quercetin is a widely used bioflavonoid found in onions, grapes, berries and citrus fruits. Under certain conditions, quercetin acts as a pro-oxidant thereby generating reactive oxygen species and promoting the oxidation of molecules. Our study investigates the effect of quercetin on the structure and function of alpha-2-macroglobulin (α2M) by employing various biophysical techniques and trypsin inhibitory assay. α2M is the major antiproteinase present in the plasma of vertebrates. Results of activity assay indicated that α2M loses its 56% of inhibitory activity on treatment with quercetin in the presence of light. UV spectroscopy reveals hyper chromaticity in absorption spectra of protein on interaction with quercetin suggesting structural change. The intrinsic fluorescence studies showed quenching of α2M spectra in the presence of quercetin, and the mode of quenching was found to be static in nature. Synchronous fluorescence indicated the alteration in the microenvironment of tryptophan residues. CD and FTIR spectroscopy confirms concentration-dependent alterations in secondary structure of α2M instigated by quercetin. The magnitude of binding constant, enthalpy change, entropy change and free energy change during the interaction process was determined by isothermal titration calorimetry. Hydrogen bonding and hydrophobic interaction were the main intermolecular forces involved during the process. This study identifies and signifies the damage induced by quercetin to α2M due to its pro-oxidant action.

Communicated by Ramaswamy H. Sarma  相似文献   

17.
Chlorine-free extraction of cellulose from rice husk and whisker isolation   总被引:1,自引:0,他引:1  
This work reports the isolation of cellulose whiskers from rice husk (RH) by means of an environmental friendly process for cellulose extraction and bleaching. The multistep process begins with the removal of pectin, cutin, waxes and other extractives from rice husk, then an alkaline treatment for the removal of hemicelluloses and lignin, and a two-step bleaching with hydrogen peroxide/tetra-acetylethylenediamine (TAED), followed by a mixture of acetic and nitric acids, for further delignification of the cellulose pulp. The techniques of infrared absorption spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), modulated differential scanning calorimetry (MDSC) and X-ray diffraction (XRD) showed that the overall process is adequate to obtain cellulose with high purity and crystallinity. This cellulose was submitted to sulfuric acid hydrolysis with the aim to isolate the whiskers. They showed the typical elongated rod-like aspect as revealed by transmission electron microscopy (TEM) and atomic force microscopy (AFM).  相似文献   

18.
The cellulose-binding domain (CBD) is the second important and the most wide-spread element of cellulase structure involved in cellulose transformation with a great structural diversity and a range of adsorption behavior toward different types of cellulosic materials. The effect of the CBD from Clostridium cellulovorans on the supramolecular structure of three different sources of cellulose (cotton cellulose, spruce dissolving pulp, and cellulose linters) was studied. Fourier-transform infrared spectroscopy (FTIR) was used to record amides I and II absorption bands of cotton cellulose treated with CBD. Structural changes as weakening and splitting of the hydrogen bonds within the cellulose chains after CBD adsorption were observed. The decrease of relative crystallinity index of the treated celluloses was confirmed by FTIR spectroscopy and X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to confirm the binding of the CBD on the cellulose surface and the changing of the cellulose morphology.  相似文献   

19.
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), ultraviolet-visible (UV-vis), fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550/I425) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22–111.00%) and relative standard deviations (0.46–2.95%), indicating that our developed method has a great application prospect in actual sample detection.  相似文献   

20.
In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers   总被引:3,自引:1,他引:2  
CdS nanoparticles have been synthesized and stabilized on unique bacterial cellulose (BC) nanofibers in situ. The obtained nanocomposite material have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transformed infrared (FTIR), thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy. The results indicated that CdS nanoparticles of about 30 nm diameter deposited on BC nanofibres are well-dispersed in the BC nanofibre-network and the uniform spherical CdS nanoparticles are comprised of nano-sized CdS crystal. Moreover, the crystallite sizes of CdS crystals are about 8 nm. The nanocomposites would have potential application as photocatalyst, novel luminescence and photoelectron transfer devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号