首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SYNOPSIS. The growth of Tetrahymena pyriformis strain HSM was strongly inhibited by 4-pentenoic acid. Supplementing the medium with acetate reversed the growth inhibition, but pyruvate was ineffective. Glycogen content was much lower in cells grown with 4-pentenoic acid than in controls; this effect was not reversed by acetate or by pyruvate. There was little effect of 4-pentenoic acid on the incorporation of label from [1-14C]acetate, [2-14C]glycerol, [1-34]ribose, [U-14C]fructose, or [1-14C]glucose into CO2, but incorporation of label into glycogen was inhibited, the strongest inhibition being on acetate and the weakest (~ 20%) on ribose, fructose, and glucose. A 3-compartment model for quantitation of labeled acetyl CoA fluxes was shown to be applicable to Tetrahymena grown in the presence of 4-pentenoic acid, and experiments were performed to establish the flux of [1-14C]acetyl CoA into glycogen, lipids, CO2, glutamate, and alanine. It was evident from the results of these experiments that 4-pentenoic acid did not appreciably inhibit β-oxidation or lipogenesis, but markedly decreased the glyconeogenic flux of labeled acetyl-CoA from the peroxismal and outer mitochondrial compartments. At least 2 mechanisms have been proposed for the action of 4-pentenoic acid: (a) reduction of the levels of acetyl CoA or free CoA and (b) direct inhibition of enzymes by 4-pentenoyl CoA or its metabolites. Although 4-pentenoic acid has little effect on acetyl-CoA metabolism in the inner mitochondrial compartment, the present data suggest that the flux through the outer mitochondrial compartment of acetyl-CoA derived from pyruvate is inhibited largely by the first, and that the glyconeogenic flux of acetyl-CoA is inhibited largely by the 2nd mechanism.  相似文献   

2.
A convenient method is described for the preparation of fucosterol-[7-3H2] and 28-isofucosterol-[7-3H2]. Both of these 24-ethylidene sterols, as well as 5α-stigmasta-7,Z-24(28)-diene-3β-ol-[2,4-3H4], were converted into the 24β-ethyl sterol, poriferasterol, by cultures of the chrysophyte alga Ochromonas malhamensis. However, fucosterol-[7-3H2] was not so efficiently incorporated as the other two compounds thus indicating that the configuration of the 24-ethylidene group is of some importance. It is suggested that a 24-ethylidene sterol of the Z-configuration is produced in de novo poriferasterol synthesis and that a Δ22,24(28)-diene may be an important subsequent intermediate.  相似文献   

3.
[2′,2′-2H2]-indole-3-acetic acid ([2′,2′-2H2]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2′,2′-2H2]-indole-3-acetyl)-β-D-glucopyranose, [2′,2′-2H2]-2-oxoindole-3-acetic acid, and 1-O-([2′,2′-2H2]-2-oxoindole-3-acetyl)-β-D-glucopyranose were also successfully synthesized from deuterated IAA, and effectively utilized as internal standards in the quantitative analysis of IAA and its metabolites in Arabidopsis thaliana by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The use of this technique shows that these metabolites were accumulated in the roots of Arabidopsis seedlings. Dynamic changes in the metabolites of IAA were observed in response to exogenous IAA, revealing that each metabolic action was regulated differently to contribute to the IAA homeostasis in Arabidopsis.  相似文献   

4.
The in vivo metabolism of 6-keto PGF was investigated in rats. Following continuous intravenous infusion for 14 days the urinary metabolites were isolated and identified. A substantial amount of unchanged 6-keto PGF was recovered in the urine. The metabolic pattern very closely resembles that of PGI2 in rats. Metabolites were found which represented 15-dehydrogenation, β-oxidation, ω and ω-1-hydroxylation and oxidation.Previous work showed that 6-keto PGF is very poorly oxidized by 15-PGDH. We administered 15-[H3]-PGI2 and 15-[H3]-6-keto PGF to rats and measured urinary tritiated water as an index for in vivo 15-PGDH activity. The results showed that PGI2 and 6-keto PGF were both oxidized to the 15-keto product, although the rate of oxidation of PGI2 was greater than that of 6-keto PGF. We concluded that the administered PGI2 was oxidized by 15-PGDH before hydrolysis to 6-keto PGF. A portion of the dose is probably hydrolyzed before 15-dehydrogenation.  相似文献   

5.
Deuterated oleates have been synthesized by semihydrogenation of acetylenic intermediates. [11-2H2]Oleate was prepared by two-carbon chain extension of the C16 alcohol obtained from [1-2H2]octyl bromide and 7-octyn-1-ol. [8-2H2] and [7-2H2]oleates were both prepared from dimethyl suberate, tetradeutero intermediate C16 alcohols were synthesized from [1,8-2H4] and [2,7-2H4]octane diols by monobromination, conversion to deuterated 9-decyn-1-ols and reaction with octyl bromide. Oxidation gave [8-2H2]-9-octadecynoate and [2,7-2H2]-9-octadecynoate, after semihydrogenation of the latter, deuterons at C-2 were removed by exchange with aqueous alkali. [6-2H2] and [5-2H2]oleates were obtained from methyl 5-tetradecynoate, semihydrogenation, deuterium exchange at C-2 and two malonate extensions gave [6-2H2]oleate; reduction with lithium aluminum deuteride, two malonate extensions and semihydrogenation gave the [5-2H2] ester. [4-2H2] and [3-2H2]oleates were both obtained from methyl 7-cis-hexadecenoate, exchange of the α protons and chain extension gave the [4-2H2] ester and reduction with lithium aluminum deuteride and chain extension gave the [3-2H2] ester.  相似文献   

6.
Three new borates containing nonmetal compounds, [C4H12N][BO4(C7H4O)2] (1), [C8H20N][BO4(C7H4O)2] (2) and [C6H18N2]0.5[BO4(C7H4O)2] (3) have been prepared, aiming at the formation of extended supramolecular networks with organic-inorganic hybrid materials of salicylic acid and boric acid. The corresponding compounds have been characterized by chemical and spectroscopic techniques. X-ray diffraction analyses of available single crystals revealed that the molecular structures of the three compounds have the same isolated [BO4(C7H4O)2] anion. The [BO4(C7H4O)2] anion with a distorted BO4 tetrahedron is formed by bidentate coordination of the B atom to two salicylic acid molecules via the O atoms of the central carboxyl and α-hydroxyl groups. The three compounds display violet luminescence with emission maxima around 365 nm.  相似文献   

7.
[2H2]-dopamine-3-0-sulfate(DM-3-0-S) and [2H2]-dopamine-4-0-sulfate (DM-4-0-S) were synthesized to investigate the possibility of their being substrates for catechol-0-methyltransferase (COMT). [2H5]-3-0-methyldopamine (3-0-Me-DM) and [2H5]-4-0-methyldopamine (4-0-Me-DM) were also synthesized as internal standards for the determination of enzymatic products by gas chromatography-mass spectrometry (GC-MS). [2H2]-DM-3-0-S or [2H2]-DM-4-0-S was incubated at 37° for 60 min in the presence of S-adenosyl-L-methionine with a crude enzyme preparation obtained from rat liver homogenate. The incubation mixture was treated with 0.5N HCl at 100°C for 1h to hydrolyze the remaining sulfate moiety. The reaction products were extracted with an Amberlite XAD-4, derivatized with pentafluoropropionic anhydride and determined by GC-MS. When [2H2]-DM-3-0-S was used as a substrate, [2H2]-3-0-Me-DM was found to be a major product accompanied by [2H2]-4-0-Me-DM as a minor product. The ratio of [2H2]-3-0-Me-DM to [2H2]-4-0-Me-DM was found to be 26:1, while the ratio was 5.4:1 when [2H2]-dopamine was used as a substrate. When [2H2]-DM-4-0-S served as a substrate, [2H2]-3-0-Me-DM was preferentially produced without detectable formation of [2H2]-4-0-Me-DM.  相似文献   

8.
Abscisic acid (ABA) in extracts of somatic embryos and seeds of Gloryvine (Vitis vinifera L.xV. rupestris Scheele) was measured by gas chromatography-mass spectrometry-selected ion monitoring using deuterated ABA, (±)-[C-3Me-2H3]ABA, ([2H3]ABA) as internal standard. The ABA content increased rapidly during embryogeny (0.035 ng/embryo at the globular stage to 0.22 ng/embryo at the mature stage). The level of ABA in the tissues of somatic embryos, expressed in ng/mg dry weight, decreased from the globular stage (0.76 ng/mg) to the mature stage (0.25 ng/mg). Chilling (4° C) induced normal germination of seeds and mature somatic embryos and precocious germination of globular, heart-shaped and torpedoshaped somatic embryos. In all cases chilling led to a marked reduction in endogenous ABA. Exogenous (±)-ABA inhibited the germination of chilled somatic embryos.Abbreviations ABA abscisic acid - [2H3]ABA (±)-[C-3Me-2H3]-abscisic acid - BHT 2,6-di-t-butyl-4-methylphenol - GC-MS gas chromatography-mass spectrometry - Me-ABA and Me-[2H3]ABA methyl esters of ABA and [2H3]ABA, respectively - SIM selected ion monitoring  相似文献   

9.
Gibberellin A4 (GA4) is biologically active in Salix pentandra and is able to induce stem elongation in seedlings grown under short day (SD) conditions, as well as in seedlings grown under long day (LD) conditions and treated with a growth retardant BX-112. [3H2]GA4 and [2H2]GA4 were applied to seedlings and leaf and stem explants of S. pentandra, and metabolites were studied using HPLC and GC-MS. After application of [3H2]GA4 to seedlings of S. pentandra, one of the three main radioactive metabolites in the free acid fraction had retention properties similar to GA1. Using [2H2]GA4, this compound was identified by GC-MS with SIM as [2H2]GA1 both from short day-grown and BX-112-treated seedlings, as well as in leaf and stem explants. After injection of GA4 into a mature leaf, GA1 was mainly found in the elongating stem tissue. Thus, the possibility that the biological activity of GA4 in Salix is due to its conversion to GA1 cannot be excluded.  相似文献   

10.
The effect of photoperiod on metabolism of 16,17-[3H2]GA19, and 1.2-[3H2]GA1 applied to intact seedlings of Salix pentandra, was investigated. No difference was found in conversion of 16,17-[3H2]GA19 to 16,17-[3H2]GA20, and 16,17-[3H2]GA1, or in metabolism of 1,2-[3H2]GA1 to [3H]GA8 between plants grown in continuous light and plants exposed for 14 days to a 12-h photoperiod. Also, leaf discs from plants grown in long or short days, converted 16,17-[3H2]GA19 both in light and darkness. These data on metabolism of 16,17-[3H2]GA19, contrast with previous results, which have indicated a photoperiodic control of the metabolism of GA19 to GA20 in S. pentandra. Presence of these applied labelled GAs and their metabolites in different parts of seedlings was recorded, after application to intact seedlings as well as to isolated plant parts. When 16,17-[3H2]GA19 was applied through the roots of intact plants, the relative amounts of 16,17-[3H2]GA1 present in leaves and shoot apices were higher than in roots and stems. In corresponding experiments with 1,2-[3H2]GA1, relatively higher amounts of [3H2]GA8 were found in roots and stems than in leaves and shoot apices. Twenty-four hours after application of 16,17-[3H2]GA19 to isolated plant parts, 16,17-[3H2]GA20 and 16,17-[3H2]GA1 were found in leaves and roots, but not in internodes. Incubation of isolated plant parts with 1,2-[3H2]GA1 for 24 h resulted in presence of [3H]GA8 in all parts. The results mentioned above were obtained by monitoring metabolites by HPLC with on-line radio counting. The conversions of 17-[2H2]GA19 to 17-[2H2]GA20 and 17-[2H2]GA1 in shoot apices and whole seedlings, and of 17-[2H2]GA8 in whole seedlings, were confirmed by GC-MS.  相似文献   

11.
A method for determination of α-ketoisocaproic acid (KIC) and [4,5,5,5,6,6,6-2H7]α-ketoisocaproic acid ([2H7]KIC) in rat plasma was developed using gas chromatography–mass spectrometry-selected ion monitoring (GC–MS-SIM). [5,5,5-2H3]α-Ketoisocaproic acid ([2H3]KIC) was used as an analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. The keto acids were extracted by cation-exchange chromatography using BondElut SCX cartridge and derivatized with N-phenyl-1,2-phenylenediamine to form N-phenylquinoxalinone derivatives. Quantitation was performed by SIM of the respective molecular ions at m/z 278, 281 and 285 for the derivatives of KIC, [2H3]KIC and [2H7]KIC on the electron impact method. The limit of detection was found to be 70 fmol per injection (S/N=3) and the limit of quantitation for [2H7]KIC was around 50 nM in rat plasma. Endogenous KIC concentrations in 50 μl of rat plasma were measured with relative intra- and inter-day precision of 4.0% and 3.3%, respectively. The intra- and inter-day precision for [2H7]KIC spiked to rat plasma in the range of 0.1 to 10 μM gave good reproducibility with relative standard deviation (RSD) of 6.5% and 5.4%, respectively. The intra- and inter-day relative errors (RE) for [2H7]KIC were less than 6.4% and 3.8%, respectively. The method was applied to determine the plasma concentration of [2H7]KIC after an intravenous administration of [2H7]KIC in rat.  相似文献   

12.
A method for determination of α-ketoisocaproic acid (KIC) and [4,5,5,5,6,6,6-2H7]α-ketoisocaproic acid ([2H7]KIC) in rat plasma was developed using gas chromatography–mass spectrometry-selected ion monitoring (GC–MS-SIM). [5,5,5-2H3]α-Ketoisocaproic acid ([2H3]KIC) was used as an analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. The keto acids were extracted by cation-exchange chromatography using BondElut SCX cartridge and derivatized with N-phenyl-1,2-phenylenediamine to form N-phenylquinoxalinone derivatives. Quantitation was performed by SIM of the respective molecular ions at m/z 278, 281 and 285 for the derivatives of KIC, [2H3]KIC and [2H7]KIC on the electron impact method. The limit of detection was found to be 70 fmol per injection (S/N=3) and the limit of quantitation for [2H7]KIC was around 50 nM in rat plasma. Endogenous KIC concentrations in 50 μl of rat plasma were measured with relative intra- and inter-day precision of 4.0% and 3.3%, respectively. The intra- and inter-day precision for [2H7]KIC spiked to rat plasma in the range of 0.1 to 10 μM gave good reproducibility with relative standard deviation (RSD) of 6.5% and 5.4%, respectively. The intra- and inter-day relative errors (RE) for [2H7]KIC were less than 6.4% and 3.8%, respectively. The method was applied to determine the plasma concentration of [2H7]KIC after an intravenous administration of [2H7]KIC in rat.  相似文献   

13.
New copper(II) complexes [CuL2]2+ (L2=7,7,9-trimethyl-1,3,6,10,13-pentaazabicyclo[11,2,11.13]hexadec-9-ene) and [Cu2(L3)(H2O)2]4+ have been prepared by the reaction of [CuL1]2+ (L1=5,5,7-trimethyl-1,4,8,11,14-pentaazatetradce-7-ene) and formaldehyde. The mononuclear complex [CuL2]2+ has a square-planar coordination geometry with a 5-6-5-6 chelate ring sequence and is relatively stable even in low pH at room temperature. The dinuclear complex [Cu2(L3)(H2O)2]4+ consists of two unsaturated 15-membered pentaaza macrocyclic units (7,7,9-trimethyl-1,3,6,10,13-pentaazacyclopentadec-9-ene) that are linked together by a methylene group in a tilted face-to-face arrangement [Cu?Cu distance: 7.413(2) Å ]. Each macrocyclic unit of [Cu2(L3)(H2O)2]4+ contains one four-membered chelate ring and has a severely distorted octahedral coordination polyhedron. The dinuclear complex is quite stable in aqueous solutions containing an excess of formaldehyde or in dry acetonitrile but is decomposed to [CuL1]2+ and [CuL2]2+ in pure water.  相似文献   

14.
[2H2]Gibberellin A24 (GA24) and [2H4]-GA9 were applied to the apices of normal-type cucumber (Cucumis sativus L. cv. Yomaki) seedlings treated with uniconazole, an inhibitor of GA biosynthesis. The metabolites from these feeds were identified by full-scan gas chromatography-mass spectrometry (GC-MS) to confirm the conversions of [2H2]GA24 to [2H2]GA9 and of [2H4]GA9 to [2H4]GA4. The results show that GA4 is biosynthesized from GA24 via GA9. In a cucumber hypocotyl elongation bioassay using cv. Yomaki, prohexadione (DOCHC), an inhibitor of 2-oxoglutaratedependent dioxygenase, inhibited the hypocotyl elongation caused by application of GA9, while DOCHC enhanced the elongation caused by application of GA4. These results indicate that GA4 is a physiologically active GA and that the activity of GA9 is due to its conversion to GA4 in cucumber shoots.  相似文献   

15.
The reaction of [TiCp*Cl3] with [Fe(η5-C5H5)(η5-C5H4COOH)] in the presence of NEt3 yields [TiCp*{(OOC-C5H4)FeCp}3] (1), (Cp = η5-C5H5). The alkyl complex [TiCp*Me3] reacts with [FeCp(η5-C5H4-CH2COOH)] or anthranilic acid rendering the tris-carboxylate titanium complexes [TiCp*{(OOCCH2-C5H4)FeCp}3] (2) and [TiCp*{(OOCC6H4NH2)3] (3), respectively. Complex 3 can be protonated with triflic acid to render [TiCp*{(OOCC6H4NH2)3].HOTf (4). The reaction of [TiCp*Me3] with anthranilic acid in a 1:2 M ratio yields the alkyl carboxylate derivative [TiCp*Me{(OOCC6H4NH2)2] (5). Complex 5 reacts with tBuNC to render the iminoacyl complex [TiCp*(η2-MeCNtBu){(OOCC6H4NH2)2] (6). The reaction of [TiCp*Cl3] with the ferroceneacetic acid, gives [TiCp*Cl2{(OOCCH2-C5H4)FeCp}] (7). The [TiCp*Cl]2(μ-O)[(ΟΟC-C5H4)2Fe] (8) can be obtained by reaction of [TiCp*Cl3] with [Fe(η5-C5H4-COOH)2] in the presence of a base. The molecular structures of 1 and 8 have been established by X-ray diffraction methods.  相似文献   

16.
The application of gibberellin A4/7 (GA4/7) to the stem of previous-year (1-year-old) terminal shoots of Scots pine (Pinus sylvestris) seedlings has been observed to stimulate cambial growth locally, as well as at a distance in the distal current-year terminal shoot, but the distribution and metabolic fate of the applied GA4/7, as well as the pathway of endogenous GA biosynthesis in this species, has not been investigated. As a first step, we analysed for endogenous GAs and monitored the transport and metabolism of labelled GAs 4, 9 and 20. Endogenous GAs from the elongating current-year terminal shoot of 2-year-old seedlings were purified by column chromatography and high-performance liquid chromatography and analysed by combined gas chromatography-mass spectrometry (GC-MS). GAs 1, 3, 4, 9, 12 and 20 were identified in the stem, and GAs 1, 3 and 4 in the needles, by full-scan mass spectrometry (GAs 1, 3, 4, 9 and 12) or selected-ion monitoring (GA20) and Kovats retention index. Tritiated and deuterated GA4, GA9 or GA20 were applied around the circumference at the midpoint of the previous-year terminal shoot, and metabolites were extracted from the elongating current-year terminal shoot, the application point, and the 1-year-old needles and the cambial region above and below the application point. After purification, detection by liquid scintillation spectrometry and analysis by GC-MS, it was evident that, for each applied GA, unmetabolised [2H2]GA and [3H]radioactivity were present in every seedling part analysed. Most of the radioactivity was retained at the application point when [3H]GA9 and [3H]GA20 were applied, whereas the largest percentage of radioactivity derived from [3H]GA4 was recovered in the current-year terminal shoot. It was also found that [2H2]GA9 was converted to [2H2]GA20 and to both [2H2]GA4 and [2H2]GA1, [2H2]GA4 was metabolised to [2H2]GA1, and [2H2]GA20 was converted to [2H2]GA29. The data indicate that for Pinus sylvestris shoots (1) GAs applied laterally to the outside of the vascular system of previous-year shoots not only are absorbed and translocated extensively throughout the previous-year and current-year shoots, but also are readily metabolised, (2) the GA metabolic pathways found are closely related to the endogenous GAs identified, and (3) GA9 metabolism follows two distinctly different routes: in one, GA9 is converted to GA1 through GA4, and in the other it is converted to GA20, which is then metabolised to GA29. The results suggest that the late 13-hydroxylation pathway is an important route for GA biosynthesis in shoots of Pinus sylvestris, and that the stimulation of cambial growth in Scots pine by exogenous GA4/7 may be due to its conversion to GA1, rather than to it being active per se.  相似文献   

17.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   

18.
[2H2]Gibberellin A24 (GA24) and [2H4]-GA9 were applied to the apices of normal-type cucumber (Cucumis sativus L. cv. Yomaki) seedlings treated with uniconazole, an inhibitor of GA biosynthesis. The metabolites from these feeds were identified by full-scan gas chromatography-mass spectrometry (GC-MS) to confirm the conversions of [2H2]GA24 to [2H2]GA9 and of [2H4]GA9 to [2H4]GA4. The results show that GA4 is biosynthesized from GA24 via GA9. In a cucumber hypocotyl elongation bioassay using cv. Yomaki, prohexadione (DOCHC), an inhibitor of 2-oxoglutaratedependent dioxygenase, inhibited the hypocotyl elongation caused by application of GA9, while DOCHC enhanced the elongation caused by application of GA4. These results indicate that GA4 is a physiologically active GA and that the activity of GA9 is due to its conversion to GA4 in cucumber shoots.  相似文献   

19.
The relationship between shoot growth and [3H]gibberellin A20 (GA20) metabolism was investigated in the GA-deficient genotype of peas, na Le. [17-13C, 3H2]gibberellin A20 was applied to the shoot apex and its metabolic fate examined by gas chromatographic-mass spectrometric analysis of extracts of the shoot and root tissues. As reported before, [13C, 3H2]GA1, [13C, 3H2]GA8 and [13C, 3H2]GA29 constituted the major metabolites of [13C, 3H2]GA20 present in the shoot. None of these GAs showed any dilution by endogenous 12C-material. [13C, 3H2]GA29-catabolite was also a prominent metabolite in the shoot tissue but showed pronounced isotope dilution probably due to carry-over of endogenous [12C]GA29-catabolite from the mature seed. In marked contrast to the shoot tissue, the two major metabolites present in the roots were identified as [13C, 3H2]GA8-catabolite and [13C, 3H2]GA29-catabolite. Both of these compounds showed strong dilution by endogenous 12C-material. Only low levels of [13C, 3H2]GA1, [13C, 3H2]GA8, [13C, 3H2]GA20 and [13C, 3H2]GA29 accumulated in the roots. It is suggested that compartmentation of GA-catabolism may occur in the root tissue in an analogous manner to that shown in the testa of developing seeds. Changes in the levels of [1,3-3H2]GA20 metabolites over 10 d following application of the substrate to the shoot apex of genotype na Le confirmed the accumulation of [3H]GA-catabolites in the root tissues. No evidence was obtained for catabolic loss of [3H]GA20 by complete oxidation or conversion to a methanol-inextractable form. The results indicate that the root system may play an important role in the regulation of biologically active GA levels in the developing shoot of Na genotypes of peas.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

20.
The reaction of sodium cyclopentadienide (NaCp) with pentafluoropyridine gives Na[4-(C5F4N)C5H4] (PyFCpNa, 1) contaminated with starting NaCp from which pure 1 could be extracted with Et2O. Hydrolysis of 1 and subsequent crystallization gives pure Diels-Alder dimer 1,4-bis(tetrafluoro-4-pyridyl)tricyclo[5.2.1.02,6]deca-3,8-diene (2). The reactions of 1 with FeCl2, [MnBr(CO)5], CoBr2, [Ni(NH3)6]Cl2, [TiCl4(THF)2] and [CpTiCl3] cleanly affords the corresponding metallocenes [Fe(PyFCp)2] (3), [(PyFCp)Mn(CO)3] (5), [Co(PyFCp)2] (6), [Ni(PyFCp)2] (8), [(PyFCp)2TiCl2] (9) and [(PyFCp)(Cp)TiCl2] (10), respectively. Tetrafluoro-4-pyridyl-substituted ferrocene 3 and [Fe(PyFCp)(Cp)] (4) can be alternatively prepared by the reaction of the respective lithioferrocenes with C5F5N in THF. Air-oxidation of complex 6 affords the corresponding cobaltocenium salt [Co(PyFCp)2]PF6 (7). All prepared compounds were characterized spectroscopically and by elemental analysis. The crystal structures of 3-7 were determined, revealing extensive arene π?π stacking and C-H?F-C contacts. Electrochemical studies supported with the spectroscopic data of the prepared metallocene complexes evidenced strong electron-withdrawing nature of the tetrafluoro-4-pyridyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号