首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Quinapril and quinaprilat concentrations were determined in perfusate, urine, and perfusate ultrafiltrate using a specific and sensitive reversed-phase high-performance liquid chromatographic procedure with radiochemical detection, coupled to liquid scintillation counting spectrometry. Quinapril and quinaprilat were measured in perfusate and urine after pretreatment with acetonitrile and subsequent centrifugation. Perfusate ultrafiltrate was used as collected. Two quinapril diketopiperazine metabolites, PD 109488 and PD 113413, were separated chromatographically from quinapril, quinaprilat, and from each other. Assay performance for quinapril and quinaprilat was assessed by examining precision and accuracy of the assay over four days. Using a 100-μl sample volume, the limit of quantitation for both 3H-quinapril and 3H-quinaprilat (sp. act. ≈ 2.0 μCi/μg) was 1 ng/ml.  相似文献   

2.
We describe an analytical method that allows the determination of organophosphorus pesticides (OPs) in different human tissues. It involves an extraction procedure with ethanol-ethyl acetate, followed by gel permeation chromatography clean-up step and analysis by capillary gas chromatography-negative chemical ionization mass spectrometry in the selected ion monitoring mode. The method was tested for 37 OPs and the recoveries obtained vary between 60 and 106% with standard deviations ranging between +/-2 and +/-10. These values are independent of the analyzed tissue. Peak area repeatability as RSD for some OPs was < or =4.8% while a good linear relationship in the range 1.0-500 pg microl(-1) with r(2)> or =0.9878 was obtained. The limit of detection for the 37 OPs falls between 0.01 and 0.09 ng g(-1) with an RSD< or =9.5%. The analytical set up in this paper has been used to analyze different samples of human tissues (liver, healthy kidney, cancer kidney and adipose tissue) of 24 patients. The number of the identified OPs in the tissue samples is different (max. 20) according to the sample while their concentration ranges between the limit of detection and 28.0 ng g(-1). The highest concentrations have been determined in liver samples without any pathology (0.4-28.0 ng g(-1)) while the lowest concentrations have been determined in healthy kidney samples (0.01-1.50 ng g(-1)). In the cancer kidney samples OP concentrations vary between 0.03 and 4.6 ng g(-1): these concentrations are more elevated than those determined in healthy kidney samples. The comparison between the concentration of OPs determined in the healthy part, when possible, and those determined in the cancer part of the same kidney sample are very interesting: in fact, in the latter the OP concentration is generally 1-2-times higher than that in the former, an index of lower enzymatic activity in the cancer tissue.  相似文献   

3.
Dexamethasone (DXM) is a synthetic glucocorticoid that is authorized for therapeutic use in veterinary medicine. The European Community (EC) fixed a maximum residue limit (MRL) at 2ng/g for liver, 0.75ng/g for muscle and kidney tissues, and 0.3ng/ml for milk, while its use as growth-promoter is completely banned. The purpose of this study was to develop and validate a simple and reliable method to determine DXM residues in bovine milk. Milk proteins were removed by the addition of concentrated trichloroacetic acid and paper filtration. Solid-phase extraction clean-up on a C18 reversed phase column was performed to obtain an extract suitable for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Chromatographic separation of DXM and the internal standard desoximetasone, was achieved on a PLRP-S polymeric reversed phase column, using a mixture of 0.1% (v/v) acetic acid in water (mobile phase A) and acetonitrile (mobile phase B) as the mobile phases. They were identified using the MS/MS detection technique, and were subsequently quantified. The method has been validated according to the requirements of the EC at 0.15, 0.30 and 0.60ng/ml (being half the MRL, the MRL and double the MRL levels fixed by the EC). Calibration graphs were prepared in the 0.15-5ng/ml range and good linearity was achieved (r>or=0.99 and goodness of fit 相似文献   

4.
A rapid high-performance liquid chromatography (HPLC) method is described for the quantitation of hydroxytestosterone metabolites. The method combines a Hypersil BDS C18 analytical column (10 cm×0.46 cm) and a linear mobile phase (1.25 ml/min) gradient of tetrahydrofuran–acetonitrile–water (10:10:80, v/v) changing to tetrahydrofuran–acetonitrile–water (14:14:72, v/v) over 10 min then remaining isocratic for 3 min. The total run time for the chromatographic separation of eight metabolites of testosterone is 15 min. Detection by UV is linear between 300 ng/ml and 10 μg/ml with a limit of detection on column of 300 ng/ml. A method for the direct HPLC analysis of liver microsomal incubates of [14C]testosterone is also briefly described and when combined with the HPLC method, offers a distinct advantage over previously reported methods for the rapid screening of testosterone hydroxylase activity in rat and human liver microsomes.  相似文献   

5.
Carboplatin is a platinum analogue that is used in a number of chemotherapeutic regimens for solid tumors, such as lung and ovarian carcinomas. Most often characterization of carboplatin's pharmacokinetic properties is based on measurement of platinum, rather than intact carboplatin. We have developed a sensitive LC-MS method for the determination of intact carboplatin in plasma ultrafiltrate and in tumor tissue. Carboplatin was extracted from rat plasma ultrafiltrate and tumor samples using solid-phase extraction cartridges and analyzed using reversed-phase chromatography with positive electrospray ionization followed by mass spectrometric detection. Using 50 microliter of plasma ultrafiltrate or 140 microliter of tumor homogenate supernatant, the extraction afforded a recovery of 58.7 and 45.8% for plasma and tumor, respectively. The mobile phase was 5% acetonitrile in 0.5% acetic acid at 0.2 ml/min that yielded a retention time of carboplatin of 2.2 min. The method has been validated at carboplatin plasma ultrafiltrate concentrations from 0.07 to 2.5 microgram/ml, and from 0.03 to 1.3 microgram/ml in tumor homogenates. The main advantages of this method compared with earlier methods are the ability to measure intact carboplatin in a sensitive and specific manner.  相似文献   

6.
An assay was developed to quantify norepinephrine (NE) and its metabolites (MHPG and DHPG) by high-performance liquid chromatography with electrochemical detection method (HPLC-ECD) in brain tissue and plasma of rats treated by LiCl. Separation on C(18) column was obtained by a mobile phase consisting of 4.5% methanol in buffer (0.1 M sodium acetate, 0.2 M citric acid) containing 0.2 mM ethylenediaminetetraacetic acid disodium salt (EDTA Na(2)) and 0.4 mM sodium octylsulfate, operated at a flow rate of 0.8 ml/min. A potential of +0.78 V was applied across the working and reference electrodes of the detector. The precision was in the range 2.88-4.35% for NE, 5.94-11.0% for MHPG and 1.97-4.40% for DHPG. Accuracy was 98.8-99.3% for NE, 97.4-100% for MHPG and 96.1-101% for DHPG. The limit of detection was 0.6 ng/ml for NE, 0.5 ng/ml for MHPG and 0.2 ng/ml for DHPG. The linearity is over the range 20-60 ng/ml for NE, 7-23 ng/ml for MHPG and 6-20 ng/ml for DHPG. The assay has been applied successfully to measure simultaneously cortex and plasmas concentrations of these three catecholamines in rats.  相似文献   

7.
Acetoin was quantitatively oxidized into diacetyl by Fe3+ in 1 M perchloric acid. The reaction of diacetyl with 4,5-dichloro-1,2-diaminobenzene afforded 6,7-dichloro-2,3-dimethylquinoxaline (DCDMQ), which was extracted by benzene containing aldrin (25 ng/ml) as an internal standard, and determined by gas chromatography with electron-capture detection. The method is very simple and sensitive. The detection limit of DCDMQ (either diacetyl or acetoin) was 10 fmol/μl of the benzene extract, and the determination limit of DCDMQ (either diacetyl or acetoin) was 50 fmol/μl of the extract. Both acetoin and diacetyl could be determined in 0.1 ml of normal human urine or blood, and both were found in rat liver, kidney and brain. The method was also applied to the determination of acetoin and diacetyl in alcoholic drinks.  相似文献   

8.
A GC method is described for the determination of xanomeline (LY246708 tartrate) and selected metabolites in rat and monkey plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane. The organic extract was evaporated to dryness and the residue was reconstituted in hexane. The analytes were separated from metabolites and endogenous substances using a DB1701 capillary column. The analytes were detected using nitrogen-phosphorus detection (NPD). The limit of quantitation was determined to be 8 ng/ml, and the response was linear from 8 to 800 ng/ml. The method has been successfully applied to rat and monkey samples pursuant to the development of xanomeline as an agent for the symptomatic treatment of Alzheimer's disease.  相似文献   

9.
A new method is presented for the detection of phentolamine by high performance liquid chromatography with electrochemical detection. The electrochemical detector was used in the oxidative mode at +900 mV potential versus Ag/AgCl reference. The on-column detection limit for phentolamine using this method was 3 ng, and detector response was linear for 3-1000 ng injected on column. The coefficient of variation for replicate injections was 2.4%. The measurement of phentolamine in biological samples was accomplished using yohimbime as the internal standard; retention time for yohimbine was 3.0 min while phentolamine eluted at 4.75 min. Biological samples were buffered to pH 9.2 and extracted with diethyl ether, followed by back extraction into 0.1 N HCl. The extraction efficiency for this method was 99.4% for phentolamine in serum and 59.3% in liver tissue. The detection limit for phentolamine was 5 ng/ml for 1.0-ml serum samples, and was 10 ng/ml for 1.0-ml liver homogenate samples. The disappearance of phentolamine from serum and liver after administration of a single ip dose of phentolamine to mice was determined using this method. Absorption from the ip route was rapid, with peak phentolamine concentrations achieved in 15 min or less. The elimination half-life of phentolamine in serum was approximately 50 min and was paralleled by disappearance of phentolamine in the liver.  相似文献   

10.
A reversed-phase LC method with electrochemical detection is described for the simultaneous determination of monatepil maleate (AJ-2615, AJ), a novel calcium entry blocker, and its three S-oxidiized metabolites in plasma. These compounds were extracted from plasma by solid-phase extraction and injected onto an ODS column. The determination limit in plasma (0.5 ml) was 10 ng/ml for AJ and 5 ng/ml for the three metabolites. The metthod was applied to the determination of AJ and the metabolites in rat plasma samples.  相似文献   

11.
Wang X  Wang R  Xing D  Su H  Ma C  Ding Y  Du L 《Life sciences》2005,77(24):3058-3067
In order to investigate the pharmacokinetics of berberine in Coptidis rhizoma extract in rat hippocampus and plasma, a simple and accurate high-performance liquid chromatography method was employed in this study. Berberine was determined using a Hypersil C(18) column with an isocratic mobile phase of acetonitrile-0.05 M potassium dihydrogen phosphate (containing 0.5% triethylamine, pH 3.0) and with UV detection at 236 nm. The lower limit of quantification for berberine in both hippocampus and plasma was 24 ng/ml, and the lowest concentrations of berberine determined in rat hippocampus and plasma samples were 30.7 ng/ml at 48 h and 38.5 ng/ml at 4 h, respectively. The calibration curve for berberine was linear over the concentration range 24--6000 ng/ml. At this concentration range, the overall recoveries (90.6--94.2%) for berberine were determined and the accuracy of intra- and inter-day assays from rat samples were less than 7% RSD. Following intravenous administration of C. rhizoma extract at a dose of 10.2 mg/kg containing 3 mg/kg berberine, berberine in the plasma eliminated rapidly (t(1/2 beta)=1.13 h). However, berberine in the hippocampus increased rapidly (t(1/2 alpha)=0.215 h), peaked at 3.67 h with a concentration of 272 ng/g, and had a slow elimination rate (t(1/2 beta)=12.0 h), which suggests that berberine could have a direct action on neuron and accumulate in the hippocampus. This study first showed the pharmacokinetic characteristics of berberine in rat hippocampus and the kinetic characteristics of berberine are dissimilar in the hippocampus and plasma.  相似文献   

12.
A sensitive and rapid high-performance liquid chromatography method has been developed for simultaneous determination of procaine and its metabolite p-aminobenzoic acid (PABA) from human and rat liver tissue extracts. The method has been validated according to ICH guidelines in terms of selectivity, linearity, lower limit of detection, lower limit of quantitation, accuracy, precision and recovery from human and rat liver tissue extracts. Chromatography was carried out on a Discovery C(18) column using 10mM ammonium acetate at pH 4.0 and acetonitrile as mobile phase. Retention times for procaine and PABA were 6.6 and 5.3 min, respectively. Linearity for each calibration curve in both tissue extracts was observed across a range from 10 microM to 750 microM for procaine and PABA. The lower limit of detection for both procaine and PABA was 5 microM and the lower limit of quantitation was 10 microM in both tissue extracts. The intra- and inter-day relative standard deviations (R.S.D.) for both procaine and PABA were <6%. Recoveries of procaine and PABA from human and rat liver tissue extracts were determined by two different methods with a single-step protein precipitation technique being employed in both methods. Recoveries for both procaine and PABA were greater than 80% from both human and rat liver tissue extracts.  相似文献   

13.
We developed a sensitive and selective method for determining levels of sultopride, a neuroleptic drug of the substituted benzamide, in human plasma using high-performance liquid chromatography (HPLC) combined with UV detection and particle beam mass spectrometry (PBMS). Sutopride was extracted with tert.-butylmethyl ether using a salting-out technique. Tiapride served as an internal standard (I.S.). Sutopride and I.S. were separated by HPLC on a silica column with a mobile phase of acetonitrile-0.1 M ammonium acetate (94:6, v/v). The calibration curves were linear over the concentration range from 5 to 1000 ng/ml by HPLC with UV detection and from 10 to 1000 ng/ml with PBMS detection. The limit of quantitation was 5 ng/ml with UV detection and 10 ng/ml with PBMS detection. The absolute recovery was 92% and the within-day coefficients of variation were 2.9–7.1% at plasma concentrations from 50 to 500 ng/ml, determined by HPLC with UV detection. Using this method, we measured the plasma concentrations of sultopride with replicate analyses in four hospitalized patients and steady-state plasma levels were determined to be 161.6±30.8, 321.1±93.7, 726.5±143.1 and 1273.6±211.2 ng/ml, respectively.  相似文献   

14.
A simple and reliable HPLC method was developed for the estimation of a new anti-cancer agent that belongs to the thioxanthone class, SR271425 in mouse plasma. SR271425, it’s metabolites and internal standard (SR233377) were separated from plasma by liquid–liquid extraction using dichloromethane after quenching the plasma proteins with acetonitrile. Chromatography was performed on a reversed-phase C18 column using methanol–10 mM phosphate buffer, pH 3.5 (45:55) as mobile phase at a flow-rate of 0.8 ml/min for first 10 min and 1.4 ml/min for the next 15 min with UV–Vis detection at 264 nm and SR233377 as internal standard. The retention times of SR271425 and internal standard were 18.6 and 14.8 min, respectively. The limit of detection was 40 ng/ml and the limit of quantification was 78 ng/ml. This method was also able to detect the three metabolites of SR271425. The intra- and inter-day relative standard deviations were less than 13% at all concentrations. This analytical method was precise and reproducible for pharmacokinetics and metabolism studies of the drug in mice. SR271425 is proceeding to phase I clinical trials in 2001.  相似文献   

15.
Catechins levels in organ tissues, particularly liver, determined by published methods are unexpectedly low, probably due to the release of oxidative enzymes, metal ions and reactive metabolites from tissue cells during homogenization and to the pro-oxidant effects of ascorbic acid during sample processing in the presence of metal ions. We describe a new method for simultaneous analysis of eight catechins in tissue: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG) (Fig. 1). The new extraction procedure utilized a methanol/ethylacetate/dithionite (2:1:3) mixture during homogenization for simultaneous enzyme precipitation and antioxidant protection. Selective solid phase extraction was used to remove most interfering bio-matrices. Reversed phase HPLC with CoulArray detection was used to determine the eight catechins simultaneously within 25 min. Good linearity (>0.9922) was obtained in the range 20-4000 ng/g. The coefficients of variance (CV) were less than 5%. Absolute recovery ranged from 62 to 96%, accuracy 92.5 +/- 4.5 to 104.9 +/- 6%. The detection limit was 5 ng/g. This method is capable for determining catechins in rat tissues of liver, brain, spleen, and kidney. The method is robust, reproducible, with high recovery, and has been validated for both in vitro and in vivo sample analysis.  相似文献   

16.
A gas-liquid chromatographic assay using electron-capture detection was developed for the quantitation of 3,3',4,4'-tetrachlorobiphenyl (TCBP) in the serum, urine, brain, liver, adipose tissue, and feces of the rat. The sample preparation involves extraction of 3,3',4,4'-TCBP with hexane under neutral or alkaline conditions (and washing with concentrated acid for feces only). Aqueous standards are used for calibration of the assay, except for adipose tissue. The lower limit of quantitative sensitivity of the assay for 3,3',4,4'-TCBP is 25 ng/mL for serum and urine and 125 ng/g for brain, liver, adipose tissue, and feces, which can be extended to 5 ng/mL and 25 ng/g, respectively, by analyzing a larger aliquot of the hexane extract. The overall accuracy is greater than 95% for serum, urine, brain and feces and 86% for liver, and the within-day coefficient of variation does not exceed 8.6%. 3,3',4,4'-TCBP was administered orally to adult, female, Sprague-Dawley rats in the dosage regimens: 0.2, 0.5 and 2 mg X kg-1 X day-1 for 10 days and 5 mg X kg-1 X day-1 for 4 days. 3,3',4,4'-TCBP distributed preferentially into adipose tissue and liver, where the xenobiotic concentration was greater in adipose tissue. The adipose tissue and hepatic 3,3',4,4'-TCBP concentrations were dependent on both the absolute dose and dosing schedule of the xenobiotic. Only trace concentrations, usually below the lower limit of quantitation, were detected in the serum, brain and kidney. Fecal excretion of 3,3',4,4'-TCBP was greater than urinary excretion for the 5 mg X kg-1 X day-1 X 4-day regimen.  相似文献   

17.
Sanguinarine is a quaternary benzo[c]phenanthridine alkaloid, extracted from the argemone oil, which produced severe human intoxications. To investigate the sanguinarine biotransformation, we develop a simple extraction process and a high performance liquid chromatographic separation coupled to a sensitive fluorometric detection of sanguinarine in cell culture medium, as well as in rat urine and plasma. After extraction with an acidified organic solvent, sanguinarine elution is performed within 15 min on a Nucleosil C18 column with a gradient using 0.2% formic acid/water/acetonitrile as mobile phase. Extracted and standard sanguinarine are characterized by mass spectrometry. The extraction recovery of sanguinarine is about 80% in cell culture medium and in rat urine, but lower in plasma. This convenient high performance liquid chromatography (HPLC) method allows to quantify sanguinarine over concentrations ranged 10-2000 ng ml(-1). The limit of fluorometric detection is 0.5 ng. Under these conditions, the lower limit of quantification of sanguinarine is 50 ng ml(-1) in cell culture medium and in rat urine and 100 ng ml(-1) in rat plasma. This analytical HPLC method is specific, linear and reproducible in all media and is suitable for quantitative determination of sanguinarine in biological fluids.  相似文献   

18.
An analytical method to identify and determine benzphetamine (BMA) and its five metabolites in urine was developed by liquid chromatography–electrospray ionization mass spectrometry (LC–ESI–MS) using the solid-phase extraction column Bond Elut SCX. Deuterium-labeled compounds, used as internal standards, were separated chromatographically from each corresponding unlabeled compound in the alkaline mobile phase with an alkaline-resistant ODS column. This method was applied to the identification and determination of BMA and its metabolites in rat urine collected after oral administration of BMA. Under the selected ion monitoring mode, the limit of quantitation (signal-to-noise ratio 10) for BMA, N-benzylamphetamine (BAM), p-hydroxybenzphetamine (p-HBMA), p-hydroxy-N-benzylamphetamine (p-HBAM), methamphetamine (MA) and amphetamine (AM) was 700 pg, 300 pg, 500 pg, 1.4 ng, 6 ng and 10 ng in 1 ml of urine, respectively. This analytical method for p-HBMA, structurally closer to the unchanged drug of all the metabolites, was very sensitive, making this a viable metabolite for discriminating the ingestion of BMA longer than the parent drug or other metabolites in rat.  相似文献   

19.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating midazolam and its two hydroxy metabolites in rat serum microsamples (50 μl). The separation used a 2 mm I.D. reversed-phase Symmetry C18 column with an isocratic mobile phase consisting of methanol-acetonitrile-14.9 mM sodium acetate in water at pH 3.0 (10:23:67, v/v). The detection limit was 10 ng/ml for all the compounds using an ultraviolet detector operated at 230 nm. The method was used to study the pharmacokinetics of midazolam after an intravenous bolus dose (0.75 mg/kg).  相似文献   

20.
An electron-capture gas chromatographic procedure was developed for the analysis of p-trifluoromethylphenol, an O-dealkylated metabolite of fluoxetine, in biological samples. A basic extraction of the biological sample was employed, followed by derivatization with pentafluorobenzenesulfonyl chloride. The internal standard, 2,4-dichlorophenol, was added to all samples used in the procedure to aid in quantitation. The practical limit of detection (signal-to-noise ratio>3) for p-trifluoromethylphenol was <5 ng/ml in human plasma samples, <10 ng/g of rat brain tissue, <25 ng/g of rat liver tissue and <25 ng/ml in human and rat urine samples. In the rat, the levels of free p-trifluoromethylphenol in the liver were 10-fold higher than those in the brain, and a substantial amount was excreted in the urine. Human urine samples contained levels of free p-trifluoromethylphenol approximately 30-fold higher than those found in human plasma samples. The procedure described is useful for the detection and quantitation of free p-trifluoromethylphenol in humans and rats treated with fluoxetine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号