首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxepin is a tricyclic antidepressant marketed as an irrational mixture of cis- and trans-geometric isomers in the ratio of 15:85. A convenient high-performance liquid chromatographic (HPLC) procedure for simultaneous quantitation of geometric isomers of doxepin and N-desmethyldoxepin in plasma and urine is described. The HPLC procedure employed a normal phase system with a silica column and a mobile phase consisting of hexane-methanol-nonylamine (95:5:0.3, v/v/v), a UV detector and nortriptyline as the internal standard. The liquid-liquid extraction solvent was a mixture of n-pentane-isopropanol (95:5, v/v). The limit of quantitation was 1 ng/ml for each isomer. The calibration curves were linear over the ranges 1–200 ng/ml (plasma) and 1–400 ng/ml (urine). In plasma, the accuracy (mean±S.D.) (97.53±1.67%) and precision (3.89±1.65%) data for trans-doxepin were similar to corresponding values for urine, i.e., 97.10±2.40 and 3.82±1.14%. Accuracy and precision data for trans-N-desmethyldoxepin in plasma were 97.57±2.06 and 4.38±3.24%, and in urine were 97.64±3.32 and 5.26±1.83%, respectively. Stability tests under three different conditions of storage indicated no evidence of degradation. The recovery of doxepin was 61–64% from plasma and 63–68% from urine. The method has been applied to analyses of plasma and urine samples from human volunteers and animals dosed with doxepin.  相似文献   

2.
A sensitive method has been developed for the determination of hydroxyurea in plasma and peritoneal fluid using reversed-phase high-performance liquid chromatography (HPLC) with electrochemical detection. Plasma or peritoneal fluid samples were treated with acetonitrile to precipitate proteins then injected to the HPLC. A C18 analytical column was used to separate hydroxyurea from interfering substances in the biological matrix. The mobile phase, consisting of 0.2 M sodium perchlorate–methanol (95:5, v/v) adjusted to pH 5.0, was delivered isocratically at a flow-rate of 1 ml/min and hydroxyurea was detected using a glassy-carbon electrode operating at an applied potential of +800 mV. Hydroxyurea eluted with a retention time of 3 min. The cycle time for analysis is short and the assay precision is acceptable (C.V. plasma=1.4–3.9%, C.V. peritoneal fluid=2.1–9.7%). The method has been validated and is linear from 25 to 400 ng/ml in plasma and 5 to 30 ng/ml in peritoneal fluid. The method has been shown to be applicable for pharmacokinetic studies.  相似文献   

3.
A liquid chromatographic method with photometric detection for the determination of cilazapril and its active metabolite and degradation product cilazaprilat in urine and pharmaceuticals has been developed. The chromatographic method consisted of a μBondapak C18 column maintained at 30±0.2°C, using a mixture of methanol-10 mM phosphoric acid (50:50 v/v) as mobile phase at a flow-rate of 1.0 ml/min. Enalapril maleate was used as internal standard. The detection was performed at a wavelength of 206 nm. A study of the retention of cilazapril and cilazaprilat using solid–liquid extraction has been carried out in order to optimise the clean-up procedure for urine samples, which consisted of a solid–liquid extraction using C8 cartridges. Recoveries greater than 85% are obtained for both compounds. The method was sensitive, precise and accurate enough to be applied to the determination of urine samples obtained from three hypertensive patients up to 24 h after intake of a therapeutic dose (detection limit of 70 ng/ml for cilazapril and cilazaprilat in urine). A comparison of the method developed using photometric and amperometric detection has been carried out.  相似文献   

4.
A selective and sensitive liquid chromatography (LC)–atmospheric pressure chemical ionisation (APCI)–mass spectroscopic (MS) assay of canrenone has been developed and validated employing Dried Blood Spots (DBS) as the sample collection medium. DBS samples were prepared by applying 30 μl of spiked whole blood onto Guthrie cards. A 6 mm disc was punched from the each DBS and extracted with 2 ml of methanolic solution of 17α-methyltestosterone (Internal Standard). The methanolic extract was evaporated to dryness and reconstituted in acetonitrile:water (1:9, v/v). The reconstituted solution was further subjected to solid phase extraction using HLB cartridges. Chromatographic separation was achieved using Waters Sunfire C18 reversed-phase column using isocratic elution, followed by a high organic wash to clear late eluting/highly retained components. The mobile phase consisted of methanol:water (60:40, v/v) pumped at a flow rate of 0.3 ml/min. LC–APCI–MS detection was performed in the selected-ion monitoring (SIM) mode using target ions at m/z 341.1 and 303.3 for canrenone and internal standard respectively. The selectivity of the method was established by analysing DBS samples from 6 different sources (individuals). The calibration curve for canrenone was found to be linear over 25–1000 ng/ml (r > 0.994). Accuracy (% RE) and precision (% CV) values for within and between day were <20% at the lower limit of quantification (LLQC) and <15% at all other concentrations tested. The LLOQ of the method was validated at 25 ng/ml. Clinical validation of the method was achieved by employing the validated method for analysis of 160 DBS samples from 37 neonatal and paediatric patients.  相似文献   

5.
A novel simple method of extraction, separation, identification and quantification of nicardipine in human plasma samples was completely studied. The human plasma samples were initially purified by solid-phase extraction (SPE) using a C18 cartridge. The extracted samples were separated and nicardipine present in the samples was quantified by high-performance liquid chromatography (HPLC) on a reversed-phase C18 column employing a mobile phase consisting of 60% (v/v) acetonitrile in 0.02 M NaH2PO4 with pH of 6.3 and a variable wavelength UV detector set at 254 nm. The recovery of nicardipine from plasma samples using selective SPE was 91±6.0% and had less interfering compounds in the HPLC analysis compared to the use of liquid–liquid (L/L) extraction. In the HPLC analysis, examining the effect of pH values of the mobile phase on the capacity factor (k′) of nicardipine revealed a method for selecting a critical k′ value of nicardipine to eliminate interfering peaks near the peak specific to the analyte. This method for quantification of nicardipine in human plasma samples was suitable for studying the pharmacokinetic profile of nicardipine administered as an intravenous bolus to cardiac surgical patients.  相似文献   

6.
A coupled achiral-chiral liquid chromatographic assay has been developed to determine the concentrations of metyrapone and the enantiomers of its chiral metabolite metyrapol in plasma and urine. The chromatographic system consisted of a silica precolumn (75 × 4.6 mm I.D.) coupled in-line to a 250 × 4.6 mm I.D. column containing cellulose tris(4-methylbenzoate) coated on silica gel (Chiralcel OJ-CSP). When plasma samples were analyzed, the mobile phase was hexane-ethanol (92:8, v/v) modified with 0.1% diethylamine and when urine samples were analyzed the mobile phase was hexane-ethanol (94:6, v/v) modified with 0.2% diethylamine. Under these chromatographic conditions the chromatographic retentions [expressed as capacity factors (k′)] for metyrapone were k′ = 2.35 (plasma) and 2.52 (urine); for (−)-metyrapol k′ = 4.22 (plasma) and 4.62 (urine); for (+)-metyrapone k′ = 5.16 (plasma) and 5.86 (urine); enantioselectivities (α) were 1.09 (plasma) and 1.13 (urine). The assay has been validated for use in metabolic studies. The analyses of plasma and urine samples from one subject following oral administration of 750 mg of metyrapone indicated that the enzymatic reduction of myterapone by aldo-keto reductase was enantiospecific.  相似文献   

7.
A sensitive HPLC method for determination of bisphenol A (BPA) in plasma samples using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a fluorescence labeling reagent was developed. The fluorescence labeling reaction was completed within 10 min at room temperature. DIB-Cl reacts with the phenolic hydroxyl group of BPA in the presence of triethylamine (TEA). The DIB-Cl derivative of BPA (DIB-BPA) was separated within 30 min with an ODS column using acetonitrile–water (90:10, v/v) as the isocratic eluent. Calibration graphs were linear over the range of 1.0–100 ng/ml (r=0.999). The detection limit of DIB-BPA was 0.05 ng/ml (2.5 pg) at a signal-to-noise ratio of 3. The relative standard deviations (RSDs) of the method for between-run were 1.0–5.0%. The analytical recoveries of known amounts (1.0 and 100 ng/ml) of BPA-spiked rabbit plasma were around 95%.  相似文献   

8.
An HPLC method has been developed and validated for the determination of dextromethorphan, dextrorphan, 3-methoxymorphinan and 3-hydroxymorphinan in urine samples. Deconjugated compounds were extracted on silica cartridges using dichloromethane/hexane (95:05, v/v) as an eluent. Chromatographic separation was accomplished on a Phenyl analytical column serially connected with a Nitrile analytical column. The mobile phase consisted of a mixture of an aqueous solution, containing 1.5% acetic acid and 0.1% triethylamine, and acetonitrile (75:25, v/v). Compounds were monitored using a fluorescence detector. Calibration curves were linear over the range investigated (0.2–8.0 μM) with correlation coefficients >0.999. The method was reproducible and precise. Coefficients of variation and deviations from nominal values were both below 10%. For all the analytes, recoveries exceeded 77% and the limits of detection were 0.01 μM. The validated assay proved to be suitable for the determination of DEM metabolic indexes reported to reflect the enzymatic activity of the cytochrome P450s, CYP2D6 and CYP3A, both in vivo, when applied to urine samples from patients, and in vitro, when applied to samples from the incubation of liver microsomes with dextromethorphan.  相似文献   

9.
In this study, 10 samples of rapeseed meal (RSM) from 10 different oil plants in Germany were examined. In situ rumen degradation of CP was determined by incubation over 1, 2, 4, 8, 16, 32 and 72 h in duplicate per time point using three rumen fistulated dry cows. Degradation kinetics were estimated by an exponential model and effective CP degradation was calculated. Degradation was corrected for small particle loss as the difference between washing loss and water-soluble fraction. Amino acid analysis was carried out in the samples and in the residues after 8 and 16 h of incubation in situ and degradation of individual amino acids was calculated for these incubation times. In vitro pepsin–pancreatin digestibility of CP (IPD) was determined in the samples as well as in the 8 and 16 h residues. Effective CP degradation for a rumen outflow rate of 8%/h (ED8) averaged 54.3% with a considerable variation among samples ranging from 44.3% to 62.7%. A multiple regression equation containing acid detergent insoluble N, total glucosinolates and petroleum ether extract as independent variables predicted ED8 with satisfying accuracy (R2 = 0.74; RSD = 6.4%). Degradation of amino acids was different from that of CP for most amino acids studied, especially after 8 h of incubation. Compared with CP, degradation of essential amino acids was predominantly lower while degradation of non-essential amino acids was higher in most cases. However, for lysine and methionine no distinct difference with CP degradation was found. Degradation of individual amino acids was predicted from CP degradation with high accuracy using linear regression equations. Average IPD of RSM was 79.8 ± 2.6%. IPD was lower in the incubation residues and decreased with longer incubation time and increasing rumen degradation, respectively.  相似文献   

10.
All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographis (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41–12.44%), reproducibility (C.V. = 9.19–14.73%), accuracy (C.V. = 3.5–11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexanedichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.  相似文献   

11.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

12.
An isocratic high-performance liquid chromatography procedure was developed for the analysis of five urinary metabolites of caffeine; caffeine or 1,3,7-trimethylxanthine (137X), paraxanthine or 1,7-dimethylxanthine (17X), 1,7-dimethylurate (17U), 1-methylxanthine (1X), 1-methylurate (1U) and 5-acetylamino-6-formylamino-3-methyluracil (AFMU). A standardized procedure was used for oral intake of caffeine and for urine collection. Conditions for sample storage and preparation were optimized, resulting in no detectable loss of caffeine metabolites after storage of the urine samples for four months. Urine samples were extracted with chloroform–2-propanol (4:1, v/v) and separated on a reversed-phase column with acetic acid (33%)–tetrahydrofuran–acetonitrile–water (1:2.5:44:925.5, v/v) as the eluent. Peaks were monitored at 280 nm. Peak heights were measured and the five metabolites were quantified using calibration curves. Cytochrome P4501A2 (CYP1A2) activity was calculated from the molar ratio (AFMU+1X+1U)/17U, N-acetyltransferase (NAT) from the ratio AFMU/1X, XO from the ratio 1U/1X+1U and cytochrome P4502A6 (CYP2A6) from the ratio 17U/(17U+17X+1U+1X+AFMU). The inter-assay coefficients of variation ranged from 1.7% for 17U to 5.7% for 1X. The intra-individual variation in metabolite ratios determined in two people, with intervals of a few days to several weeks between measurements, ranged from 2.1% for XO to 11.0% for CYP2A6. Using this procedure, metabolic ratios were determined for four groups of subjects; healthy, non-smoking females using oral contraceptives (OC users, n=5) and non-users (n=5), healthy non-smoking males (n=9) and children (n=7). Results found in this study were comparable to results reported in the literature for subjects with similar characteristics. A significantly higher CYP1A2 ratio was found for males (4.87±0.47) compared to females (3.62±0.91; p=0.005, Mann-Whitney). For the other enzyme activities, no significant differences were found between the groups of subjects in this study.  相似文献   

13.
A reversed-phase high-performance liquid chromatography method is described for the determination of oxybutynin (OXB) in human bladder samples. Following homogenization, tissue samples underwent double extraction with hexane and eventually were concentrated by freeze–drying before analysis. Chromatographic separation was performed with a mobile phase of acetonitrile–water–1 M ammonium acetate, pH 7.0 (85:13:2, v/v/v) at a flow-rate of 0.5 ml/min and double (electrochemical and UV) detection was applied. The retention time of oxybutynin eluting peak was around 18 min. Using a standard curve range of 10 to 500 ng/ml the quantification limit with electrochemical detection was 5 ng/ml with an injection volume of 100 μl. Within-day and day-to-day relative standard deviation values were 4.9 and 9.81%, respectively, while a 94% accuracy and a 72% recovery was attained. We applied this method to compare the OXB levels into bladder wall tissue samples after passive diffusion and after electromotive drug administration (EMDA), using a two-chambered poly(vinyl chloride) diffusion cell designed and developed in our laboratory. The results obtained show that EMDA enhanced OXB penetration into bladder wall and that this novel way of local drug administration can be potentially used in patients with neurogenic bladder dysfunction or urinary incontinence.  相似文献   

14.
A high-performance liquid chromatographic method with direct injection has been developed for the simultaneous determination of sulphamonomethoxine and its N4-acetyl metabolite in serum of animals and fish. A HISEP shielded hydrophobic-phase column (15 cm × 4.6 mm I.D.), a mobile phase of 0.05 M citric acid–0.2 M disodium hydrogenphosphate-acetonitrile (70:15:15, v/v), and ultraviolet detection at 265 nm were used. The standard calibration curves in serum of chicken, pig, cattle, rainbow trout and yellowtail were linear over the range 0.5–20 μg/ml. The recoveries of sulphamonomethoxine and its N4-acetyl metabolite from all serum samples determined at different concentrations (0.5, 2.0 and 10.0 μg/ml) were 93–103% and 90–103%, respectively. The lowest measurable sulphamonomethoxine and N2-acetyl metabolite concentrations were 0.04 and 0.1 μg/ml, respectively, for all serum samples.  相似文献   

15.
A simple and reliable method to estimate paper degradation by cellulolytic bacteria is described. This method is based on the detection in the culture medium of a fluorescent whitening agent (FWA) added to white paper during the manufacturing process. Preliminary results using a Cellulomonas strain cultivated in a liquid medium containing FWA, indicated that this component is non-toxic at a final concentration of 0.01 per thousand (v/v) and that the fluorescence decreased during the first 24 h of incubation, i.e. during exponential growth phase, suggesting an adsorption of FWA on bacterial cells. Consequently, all experiments have been performed with a liquid medium containing FWA (0.01 per thousand v/v) and white paper (8.0 g/l) as cellulose source. Mixed bacterial populations (MBPs) were prepared from refuse samples. These MBPs, which mainly consisted of bacterial rod cells, were used as inocula and fluorescence was measured after 30 h of incubation, i.e. after the stationary phase was reached. A high linear correlation (R(2) = 0.979) was found between the percentages of degraded paper (%P) deduced from residual paper weight and the fluorescence values (F) of the culture medium and the following equation between %P and F was determined: %P = 8.71x10(-5) x F. An additional experiment using a second MBP showed a strong correlation (R(2) = 0.990) between the measured %P and the %P estimated from F values, confirming the reproducibility of the method. Moreover, the time course of paper degradation by five replicate flasks from a unique MBP was set up. Paper degradation was detected 3 to 5 days after the beginning of the stationary phase. The average degradation rate between the 7th and the 11th day of incubation was 11.4% per day. Rates of paper degradation ranged from 31 to 60% after 10 days and from 77 to 88% after 3 weeks of incubation, depending on the inoculum.  相似文献   

16.
A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate–acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15–2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.  相似文献   

17.
A sensitive high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantitation of the novel anticancer agent topotecan and topotecan as the total of its lactone and carboxylate forms in human plasma. Linear response in analyte standard peak area were observed over the concentration range 0.05–10 ng/ml using 100-μl plasma samples. The instability of the drug in the biological matrix necessitated that the plasma fraction was obtained within 5 min after blood sampling by centrifugation, immediately followed by protein precipitation with cold methanol (−30°C). Stability studies have indicated that topotecan is stable in these methanolic extracts for at least 4.5 months at −30°C and 2 months at −70°C. For the total determination of the lactone plus lactone ring-opened forms of the drug as topotecan, plasma samples were deproteinated with methanol and, subsequently, acidified with 7% (v/v) perchloric acid. Plasma samples for the measurement of total levels of the lactone and the ring-opened forms of the topotecan were stable for at least 4.5 months when stored at −30°C. After centrifugation, the supernatants were analysed by HPLC using a Zorbax SB-C18 Stable Bond column and methanol-0.1 M hexane-1-sulfonic acid in methanol-0.01 M N,N,N′,N′-tetramethylethylenediamine (TEMED) in distilled water pH 6.0 (25:10:65, v/v) as the mobile phase. Detection was performed fluorimetrically. Within-run and between-run precision was always less than 12.1% in the concentration range of interest (0.05–10.0 ng/ml). The limit of quantitation is 0.05 ng/ml. Accuracy measurements ranged between 87.6 and 113.5%.  相似文献   

18.
A method is described for high-throughput monitoring of DNA backbone integrity in plasmids and artificial chromosomes in solution. The method is based on the denaturation properties of double-stranded DNA in alkaline conditions and uses PicoGreen fluorochrome to monitor denaturation. In the present method, fluorescence enhancement of PicoGreen at pH 12.4 is normalised by its value at pH 8 to give a ratio that is proportional to the average backbone integrity of the DNA molecules in the sample. A good regression fit (r2 > 0.98) was obtained when results derived from the present method and those derived from agarose gel electrophoresis were compared. Spiking experiments indicated that the method is sensitive enough to detect a proportion of 6% (v/v) molecules with an average of less than two breaks per molecule. Under manual operation, validation parameters such as inter-assay and intra-assay variation gave values of <5% coefficient of variation. Automation of the method showed equivalence to the manual procedure with high reproducibility and low variability within wells. The method described requires as little as 0.5 ng of DNA per well and a 96-well microplate can be analysed in 12 min providing an attractive option for analysis of high molecular weight vectors. A preparation of a 116 kb bacterial artificial chromosome was subjected to chemical and shear degradation and DNA integrity was tested using the method. Good correlation was obtained between time of chemical degradation and shear rate with fluorescence response. Results obtained from pulsed- field electrophoresis of sheared samples were in agreement with those obtained using the microplate-based method.  相似文献   

19.
M. Jalili  S. Jinap  S. Radu 《Mycopathologia》2010,170(4):251-258
The concentration of ochratoxin A (OTA) in 120 commercial pepper (84 pre-packed and 36 bulk samples), which consist of local and imported white and black pepper in powder and seed form in Malaysia were determined. The objective of the study was to investigate and compare OTA concentration in black pepper and white pepper being commercialized in Malaysia. Determination method was based on HPLC with fluorescence detection coupled with immunoaffinity column clean-up step. Mobile phase consisted of acetonitrile–water–acetic acid (49.5:49.5:1.0, v/v/v), and flow rate was 1 ml/min. The LOD was 0.02 ng/g, and the average recovery values of OTA ranged from 79.5 to 92.0% in black pepper and 81.2–90.3% in white pepper. A total of 57 samples (47.5%) were contaminated with OTA ranging from 0.15 to 13.58 ng/g. The results showed that there was a significant difference between type of pepper and brands. OTA concentration in black pepper was significantly higher than white pepper (p < 0.05). The highest concentration of ochratoxin, 13.58 ng/g, was detected in a sample of black pepper seed followed by 12.64 ng/g in a sample of black pepper powder, both were bulk samples purchased from open market.  相似文献   

20.
In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD‐H column, with n‐hexane‐ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high‐performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649–655, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号