首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The mechanically and electrochemically stable and ionically conducting solid electrolyte interphase (SEI) is important for the stabilization of metal anodes. Since SEIs are originally absent in aqueous zinc metal batteries (AZMBs), it is very challenging to suppress water-induced side reactions and dendrite growth of Zn metal anodes (ZMAs). Herein, a gradient-structured and robust solid gradient SEI, consisting of B,O-inner and F,O-exterior layer, in situ formed by hydrated eutectic electrolyte for the homogeneous and reversible Zn deposition, is demonstrated. Moreover, the molar ratio of acetamide to Zn salt is modulated to prohibit the water activity and the hydrolysis of BF4 as well as to achieve high ionic conductivity owing to the regulation of the solvation sheath of Zn2+. Consequently, the eutectic electrolyte allows Zn||Zn symmetric cells to achieve a cycling lifespan of over 4400 h at 0.5 mA cm−2 as well as Zn||PANI full cells to deliver a high capacity retention of 73.2% over 4000 cycles at 1 A g−1 and to demonstrate the stable operation at low temperatures. This work provides the rational design for the hydrated eutectic electrolyte and the corresponding gradient SEIs for dendrite-free and stable Zn anodes even under harsh conditions.  相似文献   

2.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

3.
4.
Li metal is an ideal anode material for rechargeable high energy density batteries, but its sensitivity to humid air and uncontrolled dendrite growth limit its practical applications. A novel hybrid interphase is fabricated to address these issues. This interphase consists of dense fullerene (C60) and magnesium metal bilayers, which are deposited successively on lithium foil by vacuum evaporation deposition and contribute to moisture resistance and lithium dendrite suppression. Thanks to this dual‐functional feature, the assembled cells with the modified anodes and commercial LiFePO4 cathodes exhibit long cycle life (>200 cycles) with high capacity retention (>98.5%). Moreover, even the modified anodes that are exposed to humid air (30% relative humidity) for over 12 h; the cells still deliver excellent performance, comparable to those without exposure. Such a unique hybrid interphase provides a new promising method for fabricating air‐stable and dendrite‐free lithium metal batteries.  相似文献   

5.
The low Coulombic efficiency and serious security issues of lithium (Li) metal anode caused by uncontrollable Li dendrite growth have permanently prevented its practical application. A novel SiO2 hollow nanosphere‐based composite solid electrolyte (SiSE) for Li metal batteries is reported. This hierarchical electrolyte is fabricated via in situ polymerizing the tripropylene gycol diacrylate (TPGDA) monomer in the presence of liquid electrolyte, which is absorbed in a SiO2 hollow nanosphere layer. The polymerized TPGDA framework keeps the prepared SiSE in a quasi‐solid state without safety risks caused by electrolyte leakage, meanwhile the SiO2 layer not only acts as a mechanics‐strong separator but also provides the SiSE with high room‐temperature ionic conductivity (1.74 × 10?3 S cm?1) due to the high pore volume (1.49 cm3 g?1) and large liquid electrolyte uptake of SiO2 hollow nanospheres. When the SiSE is in situ fabricated on the cathode and applied to LiFePO4/SiSE/Li batteries, the obtained cells show a significant improvement in cycling stability, mainly attributed to the stable electrode/electrolyte interface and remarkable suppression for Li dendrite growth by the SiSE. This work can extend the application of hollow nanooxide and enable a safe, efficient operation of Li anode in next generation energy storage systems.  相似文献   

6.
7.
Due to high ionic conductivity and low cost, Li1.4Al0.4Ti1.6(PO4)3 (LATP) has emerged as a promising solid‐state electrolyte for next‐generation lithium (Li) metal solid‐state batterie with high safety performance and energy density. However, the extremely high impedance and surface instability of LATP with Li metal retard its practical application. Herein, a novel method is proposed to construct an ultrathin ZnO layer that is tightly coated on the LATP pellets, surface (ZnO@LATP) via magnetron sputtering, which in situ reacts with Li to form a low electronic conductivity and multifunctional solid electrolyte interphase (SEI). The formed SEI can not only effectively lower the interfacial resistance, but also overcome the side reactions of LATP with the Li metal anode and suppress the Li dendrite growth. Specifically, the interface resistance decreases from 80 554 to 353 Ω and the overpotential reduces from 1 V to 20 mV. As a result, the Li/ZnO@LATP@ZnO/Li symmetric batteries can stably cycle for more than 2000 h without short circuit at 0.05 mA cm?2 and Li/ZnO@LATP/LiFePO4 batteries show excellent cycle stability for 200 cycles at 0.1 C. This work highlights the significance of multifunctional interphase between LATP and Li metal for improvement of interfacial impedance and instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号