首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The migration of zinc‐ion batteries from alkaline electrolyte to neutral or mild acidic electrolyte promotes research into their flexible applications. However, discharge voltage of many reported zinc‐ion batteries is far from satisfactory. On one hand, the battery voltage is substantially restricted by the narrow voltage window of aqueous electrolytes. On the other hand, many batteries yield a low‐voltage discharge plateau or show no plateau but capacitor‐like sloping discharge profiles. This impacts the battery's practicability for flexible electronics where stable and consistent high energy is needed. Herein, an aqueous zinc hybrid battery based on a highly concentrated dual‐ion electrolyte and a hierarchically structured lithium‐ion‐intercalative LiVPO4F cathode is developed. This hybrid battery delivers a flat and high‐voltage discharge plateau of nearly 1.9 V, ranking among the highest reported values for all aqueous zinc‐based batteries. The resultant high energy density of 235.6 Wh kg?1 at a power density of 320.8 W kg?1 also outperforms most reported zinc‐based batteries. A designed solid‐state and long‐lasting hydrogel electrolyte is subsequently applied in the fabrication of a flexible battery, which can be integrated into various flexible devices as powerful energy supply. The idea of designing such a hybrid battery offers a new strategy for developing high‐voltage and high‐energy aqueous energy storage systems.  相似文献   

2.
The performance of Al2O3 atomic layer deposition (ALD) coatings for LiCoO2/natural graphite (LCO/NG) batteries is investigated, where various permutations of the electrodes are coated in a full battery. Coating both electrodes with ~1 nm of alumina as well as coating only the LCO (positive electrode) enables improved performance when cycling at high voltage, where the LCO is known to degrade. However, we found that coating only the NG (negative electrode) also improves the performance of the whole battery when cycling at high voltage. Under these conditions, the uncoated LCO (positive electrode) should degrade quickly, and the NG should be unaffected. A variety of characterization techniques show the surface reactions that occur on the negative electrode and positive electrode are related, resulting in the enhanced performance of the uncoated LCO.  相似文献   

3.
Various electrolyte additives are developed to construct a cathode electrolyte interphase (CEI) layer for high-voltage LiCoO2 since the cathode suffers severe interfacial degradation when increasing the cut-off voltage over 4.55 V. However, the CEI derived from the additive sacrificial reaction faces the risk of rupture due to the corrosion reaction and the volumetric variation of the cathode. Herein, a non-passivating cathode interface is realized for 4.6 V LiCoO2 with a non-sacrificial electrolyte additive (TBAClO4) by regulating the solvent environment at the interface rather than the preferential decomposition for CEI formation. Owing to the novel protection mechanism, the cell performance shows little dependence on the CEI-formation process. Therefore, an ultra-high initial coulombic efficiency (96.63%) and excellent cycling stability (81% capacity retention after 300 cycles) are achieved in Li||LiCoO2 batteries. Moreover, even with the electrolyte containing 1000 ppm H2O, the remarkable water capture ability of the additive together with its interfacial regulation enables the 4.6 V Li||LiCoO2 battery to retain 80% capacity after 200 cycles. This non-sacrificial strategy provides new insights into high-voltage electrolyte additive design for high-energy-density lithium metal batteries.  相似文献   

4.
Uncontrolled transport of anions leads to many issues, including concentration polarization, excessive interface side reactions, and space charge-induced lithium dendrites at the anode/electrolyte interface, which severely deteriorates the cycling stability of lithium metal batteries. Herein, an asymmetrical polymer electrolyte modified by a boron-containing single-ion conductor (LiPVAOB), is designed to inhibit the nonuniform aggregation of free anions in the vicinity of the lithium anode through the repulsion effect improving the lithium-ion transference number to 0.63. This LiPVAOB exerts a repulsion interaction with free anions even at a long distance and a selective effect for free anions transport, which diminishes uneven aggregation of free anions at the interface and suppresses space charges-induced lithium dendrites growth. Consequently, the assembled Li||Li cell delivers an ultra-long cycle for over 5400 h. The Li||LiFePO4 cell exhibits outstanding cycle performance with a capacity retention of 93% over 4500 cycles. In particular, the assembled high-voltage Li||Li1.2Ni0.2Mn0.6O2 cell (charged to 4.8 V) exhibits good cycle stability with a high specific capacity of 245 mAh g−1. This designed polymer electrolyte provides a promising strategy for regulating ion transport to inhibit space charge-induced lithium dendrite growth for high-performance lithium metal batteries.  相似文献   

5.
The recent development of high-energy LiCoO2 (LCO) and progress in the material recycling technology have brought Co-based materials under the limelight, although their capacity still suffers from structural instability at highly delithiated states. Thus, in this study, a secondary doping ion substitution method is proposed to improve the electrochemical reversibility of LCO materials for Li-ion batteries. To overcome the instability of LCO at highly delithiated states, Na ions are utilized as functional dopants to exert the pillar effect at the Li sites. In addition, Fe-ion substitution (secondary dopant) is performed to provide thermodynamically stable surroundings for the Na-ion doping. Density functional theory calculations reveal that the formation energy for the Na-doped LCO is significantly reduced in the presence of Fe ions. Na and Fe doping improve the capacity retention as well as the average voltage decay at a cutoff voltage of 4.5 V. Furthermore, structural analysis indicates that the improved cycling stability results from the suppressed irreversible phase transition in the Na- and Fe-doped LCO. This paper highlights the fabrication of high-energy Co-rich materials for high voltage operations, via a novel ion substitution method, indicating a new avenue for the manufacturing of layered cathode materials with a long cycle life.  相似文献   

6.
Rechargeable magnesium ion batteries are interesting as one of the alternative metal ion battery systems to lithium ion batteries due to the wide availability and accessibility of magnesium in the earth's crust. On the one hand, electrolyte solutions in which Mg metal anodes are fully reversible are not suitable for the use of high voltage/high capacity transition metal oxide cathodes due to complex surface phenomena. On the other hand, Mg metal anodes cannot work reversibly in conventional electrolyte solutions in which high voltage/high capacity Mg insertion cathodes can work because of passivation phenomena that fully block them. Replacing Mg metal with alternative anodes that can work reversibly in conventional electrolyte solutions could provide a promising route to elaborate high voltage and high capacity rechargeable Mg battery systems. Herein, the recent progress in alloy anodes based on group IIIA, IVA, VA elements is summarized. The theoretical evaluations, achievable capacities, synthetic strategies, battery test configurations, electrochemical properties, and underlying reaction mechanisms are systematically summarized and discussed. The key issues and challenges impeding their current use are identified and some valuable suggestions for their future development as practical reversible anodes for Mg batteries are provided.  相似文献   

7.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

8.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   

9.
Herein, a two‐species redox reaction of Co(II)/Co(III) and Fe(II)/Fe(III) incorporated in cobalt hexacyanoferrate (CoFe(CN)6) is proposed as a breakthrough to achieve jointly high‐capacity and high‐voltage aqueous Zn‐ion battery. The Zn/CoFe(CN)6 battery provides a highly operational voltage plateau of 1.75 V (vs metallic Zn) and a high capacity of 173.4 mAh g?1 at current density of 0.3 A g?1, taking advantage of the two‐species redox reaction of Co(II)/Co(III) and Fe(II)/Fe(III) couples. Even under extremely fast charge/discharge rate of 6 A g?1, the battery delivers a sufficiently high discharge capacity of 109.5 mAh g?1 with its 3D opened structure framework. This is the highest capacity delivered among all the batteries using Prussian blue analogs (PBAs) cathode up to now. Furthermore, Zn/CoFe(CN)6 battery achieves an excellent cycling performance of 2200 cycles without any capacity decay at coulombic efficiency of nearly 100%. One further step, a sol–gel transition strategy for hydrogel electrolyte is developed to construct high‐performance flexible cable‐type battery. With the strategy, the active materials can adequately contact with electrolyte, resulting in improved electrochemical performance (≈18.73% capacity increase) and mechanical robustness of the solid‐state device. It is believed that this study optimizes electrodes by incorporating multi redox reaction species for high‐voltage and high‐capacity batteries.  相似文献   

10.
The release of Li+ from stoichiometric LiCoO2 (LCO) – a typical battery electrode material – is investigated by means of thermionic emission. Analysis of the data leads to an ionic work function of wLi+(LCO) = 4.1 eV. Combination of this value with the electronic work function we? (LCO) = 5.1 eV, also measured in this work by photoelectron spectroscopy, and with information available from the literature allows the set up, for the first time, of a complete thermodynamic cycle for a Li//LiCoO2 battery. An open circuit cell voltage of 2.4 eV is derived in line with available literature information. The proof‐of‐principle study presented here provides experimental data on the binding energy values, i.e., chemical potentials, of Li+‐ions and electrons and thus of Li‐atoms in LiCoO2 as a battery cathode and is expected to open access to a better understanding and thus to a better design of battery materials.  相似文献   

11.
Resources used in lithium‐ion batteries are becoming more expensive due to their high demand, and the global cobalt market heavily depends on supplies from countries with high geopolitical risks. Alternative battery technologies including magnesium‐ion batteries are therefore desirable. Progress toward practical magnesium‐ion batteries are impeded by an absence of suitable anodes that can operate with conventional electrolyte solvents. Although alloy‐type magnesium‐ion battery anodes are compatible with common electrolyte solvents, they suffer from severe failure associated with huge volume changes during cycling. Consequently, achieving more than 200 cycles in alloy‐type magnesium‐ion battery anodes remains a challenge. Here an unprecedented long‐cycle life of 1000 cycles, achieved at a relatively high (dis)charge rate of 3 C (current density: 922.5 mA g?1) in Mg2Ga5 alloy‐type anode, taking advantage of near‐room‐temperatures solid–liquid phase transformation between Mg2Ga5 (solid) and Ga (liquid), is demonstrated. This concept should open the way to the development of practical anodes for next‐generation magnesium‐ion batteries.  相似文献   

12.
There is a growing concern about the cyclability and safety, in particular, of the high‐energy density lithium–metal batteries. This concern is even greater for Li–O2 batteries because O2 that is transported from the cathode to the anode compartment, can exacerbate side reactions and dendrite growth of the lithium metal anode. The key to solving this dilemma lays in tailoring the solid electrolyte interphase (SEI) formed on the lithium metal anode in Li–O2 batteries. Here it is reported that a new electrolyte, formed from LiFSI as the salt and a mixture of tetraethylene glycol dimethyl ether and polymeric ionic liquid of P[C5O2NMA,11]FSI as the solvent, can produce a stable electrode (both cathode and anode)|electrolyte interface in Li–O2 batteries. Specifically, this new electrolyte, when in contact with lithium metal anodes, has the ability to produce a uniform SEI with high ionic conductivity for Li+ transport and desired mechanical property for suppression of dendritic lithium growth. Moreover, the electrolyte possesses a high oxidation tolerance that is very beneficial to the oxygen electrochemistry on the cathode of Li–O2 batteries. As a result, enhanced reversibility and cycle life are realized for the resultant Li–O2 batteries.  相似文献   

13.
The combination of high‐capacity anodes and high‐voltage cathodes has garnered a great deal of attention in the pursuit of high‐energy‐density lithium‐ion batteries. As a facile and scalable electrode‐architecture strategy to achieve this goal, a direct one‐pot decoration of high‐capacity silicon (Si) anode materials and of high‐voltage LiCoO2 (LCO) cathode materials is demonstrated with colloidal nanoparticles composed of electroconductive antimony‐doped tin oxide (ATO). The unusual ATO nanoparticle shells enhance electronic conduction in the LCO and Si electrode materials and mitigate unwanted interfacial side reactions between the electrode materials and liquid electrolytes. The ATO‐coated LCO materials (ATO‐LCO) enable the construction of a high‐mass‐loading cathode and suppress the dissolution of cobalt and the generation of by‐products during high‐voltage cycling. In addition, the ATO‐coated Si (ATO‐Si) anodes exhibit highly stable capacity retention upon cycling. Integration of the high‐voltage ATO‐LCO cathode and high‐capacity ATO‐Si anode into a full cell configuration brings unprecedented improvements in the volumetric energy density and in the cycling performance compared to a commercialized cell system composed of LCO/graphite.  相似文献   

14.
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries.  相似文献   

15.
Dual‐ion batteries (DIBs) with high operation voltage offer promising candidates for low‐cost clean energy chemistries. However, there still exist tough issues, including structural collapse of the graphite cathode due to solvent co‐intercalation and electrolyte decomposition on the electrode/electrolyte interface, which results in unsatisfactory cyclability and fast battery failure. Herein, Li4Ti5O12 (LTO) modified mesocarbon microbeads (MCMBs) are proposed as a cathode material. The LTO layer functions as a skeleton and offers electrocatalytic active sites for in situ generation of a favorable and compatible cathode electrolyte interface (CEI) layer. The synergetic LTO‐CEI network can change the thermodynamic behavior of the PF6? intercalation process and maintain the structural integrity of the graphite cathode, as a “Great Wall” to protect the cathode from structural collapse and electrolyte decomposition. Such LTO‐CEI reinforced cathode exhibits a prolonged cyclability with 85.1% capacity retention after 2000 cycles even at cut‐off potential of 5.4 V versus Li+/Li. Moreover, the LTO‐modified MCMB (+)//prelithiated MCMB (?) full cell exhibits a high energy density of ≈200 Wh kg?1, remarkably enhanced cyclability with 93.5% capacity retention after 1000 cycles. Undoubtedly, this work offers in‐depth insight into interface chemistry, which can arouse new originality to boost the development of DIBs.  相似文献   

16.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

17.
Selenium (Se), due to its high electronic conductivity and high energy density, has recently attracted considerable interest as a cathode material for rechargeable Li/Na batteries. However, the poor cycling stability originating from the severe shuttle effect of polyselenides hinders their practical applications. Herein, highly stable Li/Na–Se batteries are developed using ultrathin (≈270 nm, loading of 0.09 mg cm?2) cetrimonium bromide (CTAB)/carbon nanotube (CNT)/Ti3C2Tx MXene hybrid modified polypropylene (PP) (CCNT/MXene/PP) separators. The hybrid separator can immobilize the polyselenides via enhanced Lewis acid–base interactions between CTAB/MXene and polyselenides, which is demonstrated by theoretical calculations and X‐ray photoelectron spectroscopy. The incorporation of CNT helps to improve the electrolyte infiltration and facilitate the ionic transport. In situ permeation experiments are conducted for the first time to visually study the behavior of polyselenides, revealing the prohibited shuttle effect and protected Li anode from corrosion with CCNT/MXene/PP separators. As a result, the Li–Se batteries with CCNT/MXene/PP separators deliver an outstanding cycling performance over 500 cycles at 1C with an extremely low capacity decay of 0.05% per cycle. Moreover, the hybrid separators also perform well in Na–Se batteries. This study develops a preferable separator–electrolyte interface and the concept can be applied in other conversion‐type battery systems.  相似文献   

18.
High energy batteries urgently required to power electric vehicles are restricted by a number of challenges, one of which is the sluggish kinetics of cell reactions under low temperatures. A novel approach is reported to improve the low temperature performance of high energy batteries through rational construction of low impedance anode and cathode interface films. Such films are simultaneously formed on both electrodes via the reduction and oxidation of a salt, lithium difluorobis(oxalato) phosphate. The formation mechanisms of these interface films and their contributions to the improved low temperature performances of high energy batteries are demonstrated using various physical and electrochemical techniques on a graphite/LiNi0.5Co0.2Mn0.3O2 battery using 1 m LiPF6‐ethylene carbonate/ethyl methyl carbonate (1/2, in weight) baseline electrolyte. It is found that the interface impedances, especially the one on the anode, constitute the main obstacle to capacity delivery of high energy batteries at low temperatures, while the salt containing fluorine and oxalate substructures used as additives can effectively suppress them.  相似文献   

19.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

20.
Nanostructured V2O5 is emerging as a new cathode material for lithium ion batteries for its distinctly high theoretic capacity over the current commercial cathodes. The main challenges associated with nanostructured V2O5 cathodes are structural degradation, instability of the solid‐electrolyte interface layer, and poor electron conductance, which lead to low capacity and rapid decay of cyclic stability. Here, a novel composite structure of V2O5 nanoparticles encapsulated in 3D networked porous carbon matrix coated on carbon fibers (V2O5/3DC‐CFs) is reported that effectively addresses the mentioned problems. Remarkably, the V2O5/3DC‐CF electrode exhibits excellent overall lithium‐storage performance, including high Coulombic efficiency, excellent specific capacity, outstanding cycling stability and rate property. A reversible capacity of ≈183 mA h g?1 is obtained at a high current density of 10 C, and the battery retains 185 mA h g?1 after 5000 cycles, which shows the best cycling stability reported to date among all reported cathodes of lithium ion batteries as per the knowledge. The outstanding overall properties of the V2O5/3DC‐CF composite make it a promising cathode material of lithium ion batteries for the power‐intensive energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号