首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
African dipnoi (lungfish) are aestivating fish and obligate air breathers that, throughout their complex life cycle, undergo remarkable morpho-functional organ readjustment from biochemical to morphological level. In the present review we summarize the changes of the NOS/NO (Nitric Oxide Synthase/Nitric Oxide) system occurring in lungs, gills, kidney, heart, and myotomal muscle of African lungfish of the genus Protopterus (P. dolloi and P. annectens), in relation to the switch from freshwater to aestivation, and vice-versa. In particular, the expression and localization patterns of NOS, and its protein partners Akt, Hsp-90 and HIF-1α, have been discussed, together with the apoptosis rate, evaluated by TUNEL technique.We hypothesize that all these molecular components are crucial in signalling transduction/integration networks induced by environmental challenges (temperature, dehydration, inactivity)experienced at the beginning, during, and at the end of the dry season.  相似文献   

2.
Lungfish (Dipnoi) date back to the Devonian, and some fossil taxa as well as extant African lungfishes are known for their ability to aestivate, tolerating low-oxygen environments associated with seasonal drying. Extant lungfishes are separated into two families: Lepidosirenidae (Protopterus in Africa and Lepidosiren in South America) and Neoceratodontidae (Neocerotadus in Australia). African lungfishes were more geographically and phylogenetically diverse on the continent in the past than they are today, with only 5% of extinct taxa recorded from the sub-Saharan fossil record. Given the sparse record of Lepidosirenidae fossils from continental Africa, any new materials are important for understanding diversification of the clade. Here we describe new lungfish fossils cautiously referable to Protopterus annectens and Protopterus aethiopicus, which are strongly supported sister taxa based on the molecular phylogeny. Specimens were collected from the late Oligocene Nsungwe Formation in the Rukwa Rift Basin (RRB) of southwestern Tanzania. The late Oligocene Nsungwe Formation represents a sequence of continental rift-fill deposits of the Songwe sub-basin of the RRB and is subdivided into the lower Utengule and upper Songwe members. Recovery of such material from the Paleogene of Africa below the equator addresses a sizable gap in the lungfish fossil record. It also expands the Nsungwe Formation fauna that includes invertebrates, alestid fishes, ptychadenid anurans, snakes, and several clades of mammals, deepening paleoecological insights into the late Oligocene record of the continental African interior. At present, P. aethiopicus and P. dolloi have an extensive modern eastern African distribution associated with the rift lakes and a region where extant members of P. annectens are not presently known. Fossil specimens described herein document presence of the clade during Paleogene volcanic activity in the western branch of the Eastern African Rift System.  相似文献   

3.
4.
Distribution of ADH, ALP, FBALD, GAPDH, G3PDH, G6PDH, GPI, LDH, MDH, PGM, and SOD was identified in retina, heart, muscle, liver, kidney, gills, brain, gut, lung and ovary of the African lungfish. Data are compared with patterns previously described in dipnoans and other vertebrates. The number of loci expressed for all enzymes was found to be similar to those of diploid Actinopterygii. Differences in the number of loci expressed in Amphibia were found for ALP, sG3PDH, GPI, LDH, MDH and SOD. Differences in tissue distribution were noted in ALP due to the absence of an intestinal-specific form typical of teleostean fish, amphibians, reptiles and birds, and in GPI and MDH, due to the tissue expression, as in primitive fish. There were also differences in LDH, where a third locus (LDH-C*) was expressed in the gills of Protopterus annectens and not in the retina or liver tissues, as in teleosts. LDH-A4 was most common in all the tissues. Major differences were noted in the tissue patterns of protein expression in the three dipnoans compared. As expected, the least divergence was found between the two species belonging to the same family (Lepidosirenidae). The highest index of divergence was observed between Neoceratodus forsteri and Lepidosiren paradoxa, belonging to the families Ceratontidae and Lepidosirenidae, respectively. The divergence is revealed by changes at the enzyme and morphological levels. These results suggest that P. annectens occupies an interesting systematic position, its biochemical characteristics distinguishing it from N. forsteri, L. paradoxa, the advanced fish and amphibians.  相似文献   

5.
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase) of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of aestivation in the liver of P. annectens.  相似文献   

6.
Cardiac cholinergic and adrenergic tones were determined in minimally instrumented African lungfish Protopterus annectens. Mean ±S.E. routine heart rate (fH) was 31·6 ± 1·4 beats min?1, cholinergic tone was 34·6 ± 5·2% and adrenergic tone was 9·4 ± 2·3%, while the intrinsic fH after blockade of both adrenergic and cholinergic control systems was 39·1 ± 1·3 beats min?1. It is demonstrated that routine cholinergic tone has probably been underestimated in previous studies on lungfishes, suggesting that withdrawal of vagal tone may provide an important mechanism to increase fH in this group of fishes during, for example, air breathing.  相似文献   

7.
Lungfish (Dipnoi) are the closest living relatives to tetrapods, and they represent the transition from water to land during vertebrate evolution. Lungfish are armed with immunoglobulins (Igs), one of the hallmarks of the adaptive immune system of jawed vertebrates, but only three Ig forms have been characterized in Dipnoi to date. We report here a new diversity of Ig molecules in two African lungfish species (Protopterus dolloi and Protopterus annectens). The African lungfish Igs consist of three IgMs, two IgWs, three IgNs, and an IgQ, where both IgN and IgQ originated evidently from the IgW lineage. Our data also suggest that the IgH genes in the lungfish are organized in a transiting form from clusters (IgH loci in cartilaginous fish) to a translocon configuration (IgH locus in tetrapods). We propose that the intraclass diversification of the two primordial gnathostome Ig classes (IgM and IgW) as well as acquisition of new isotypes (IgN and IgQ) has allowed lungfish to acquire a complex and functionally diverse Ig repertoire to fight a variety of microorganisms. Furthermore, our results support the idea that “tetrapod-specific” Ig classes did not evolve until the vertebrate adaptation to land was completed ~360 million years ago.  相似文献   

8.
We describe the structure of the lympho-granulocytic tissue associated with the wall of the spiral valve of the African lungfish Protopterus annectens. The study was performed under freshwater conditions and after 6 months of aestivation. The lympho-granulocytic tissue consists of nodes surrounded by reticular tissue. The nodes are formed by an outer and an inner component separated by a thin collagenous layer. The outer component is a reticular-like tissue that contains two types of granulocytes, developing and mature plasma cells and melanomacrophage centres (MMCs). The inner component, the parenchyma, contains a meshwork of trabeculae and vascular sinusoids and shows dark and pale areas. The dark areas contain diffuse lymphoid tissue, with a large number of mitoses and plasma cell clusters. The pale areas contain a small number of macrophages and lymphocytes. Macrophages and sinus endothelial cells are filled with haemosiderin granules and appear to form part of the reticuloendothelial system of the lungfish. The reticular tissue houses granulocytes, plasma cells and MMCs and might serve for the housing and maturation of cells of the white series. After aestivation, the nodes undergo lymphocyte depletion, the suppression of mitosis, granulocyte invasion and the occurrence of cell death. By contrast, few histological changes occur in the reticular tissue. Whereas the nodes appear to be involved in lymphocyte proliferation and plasma cell maturation, the function of the reticular tissue remains obscure.  相似文献   

9.
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that has been initially characterized from a salmon pituitary extract and subsequently identified in various species from all classes of vertebrates. The present review summarizes the current knowledge regarding the neuroanatomical distribution of MCH-immunoreactive neurons in submammalian vertebrates. In all species examined, MCH-immunoreactive perikarya are confined to the hypothalamus, with the exception of the cyclostome Lampetra fluvialis and the lungfish Protopterus annectens, in which additional populations of MCH-immunoreactive cell bodies occur in the telencephalon, and the frogs Rana ridibunda and Rana esculenta which exhibit MCH-positive perikarya in thalamic nuclei. In teleosts, in the frog R. ridibunda and in the L. fluvialis, MCH is present in the classical hypothalamic-neurohypophysial system indicating that the peptide may play the role of a neurohormone. In other groups, MCH-immunoreactive nerve fibers are widely distributed in various brain regions suggesting that, in these species, MCH in the central nervous system may act as a neurotransmitter or/and a neuromodulator rather than a neurohormone.  相似文献   

10.
This study aimed to obtain the full sequence of carbamoyl phosphate synthetase III (cps III) from, and to determine the mRNA expression of cps III in, the liver of P. annectens during aestivation in air, hypoxia or mud, or exposure to environmental ammonia (100 mmol l−1 NH4Cl). The complete coding cDNA sequence of cps III from the liver of P. annectens consisted of 4530 bp, which coded for 1,510 amino acids with an estimated molecular mass of 166.1 kDa. The Cps III of P. annectens consisted of a mitochondrial targeting sequence of 44 amino acid residues, a GAT domain spanning from tyrosine 45 to isoleucine 414, and a methylglyoxal synthase-like domain spanning from valine 433 to arginine 1513. Two cysteine residues (cysteine 1337 and cysteine 1347) that are characteristic of N-acetylglutamate dependency were also present. The critical Cys-His-Glu catalytic triad (cysteine 301, histidine 385 and glutamate 387) together with methionine 302 and glutamine 305 affirmed that P. annectens expressed Cps III and not Cps I. A comparison of the translated amino acid sequence of Cps III from P. annectens with CPS sequences from other animals revealed that it shared the highest similarity with elasmobranch Cps III. A phylogenetic analysis indicates that P. annectens CPS III could have evolved from Cps III of elasmobranchs. Indeed, Cps III from P. annectens used mainly glutamine as the substrate, and its activity decreased significantly when glutamine and ammonia were included together in the assay system. There were significant increases (9- to 12-fold) in the mRNA expression of cps III in the liver of fish during the induction phase (days 3 and 6) of aestivation in air. Aestivation in hypoxia or in mud had a delayed effect on the increase in the mRNA expression of cps III, which extended beyond the induction phase of aestivation, reiterating the importance of differentiating effects that are intrinsic to aestivation from those intrinsic to hypoxia. Furthermore, results from this study confirmed that environmental ammonia exposure led to a significant increase in the mRNA expression of cps III in the liver of P. annectens, alluding to the important functional role of urea not only as a product of ammonia detoxification but also as a putative internal cue for aestivation.  相似文献   

11.
The West African lungfish (Protopterus annectens) performs benthic, pelvic fin‐driven locomotion with gaits common to tetrapods, the sister group of the lungfishes. Features of P. annectens movement are similar to those of modern tetrapods and include use of the distal region of the pelvic fin as a “foot,” use of the fin to lift the body above the substrate and rotation of the fin around the joint with the pelvis. In contrast to these similarities in movement, the pelvic fins of P. annectens are long, slender structures that are superficially very different from tetrapod limbs. Here, we describe the musculoskeletal anatomy of the pelvis and pelvic fins of P. annectens with dissection, magnetic resonance imaging, histology and 3D‐reconstruction methods. We found that the pelvis is embedded in the hypaxial muscle by a median rostral and two dorsolateral skeletal projections. The protractor and retractor muscles at the base of the pelvic fin are fan‐shaped muscles that cup the femur. The skeletal elements of the fin are serially repeating cartilage cylinders. Along the length of the fin, repeating truncated cones of muscles, the musculus circumradialis pelvici, are separated by connective tissue sheets that connect the skeletal elements to the skin. The simplicity of the protractor and retractor muscles at the base of the fin is surprising, given the complex rotational movement those muscles generate. In contrast, the series of many repeating segmental muscles along the length of the fin is consistent with the dexterity of bending of the distal limb. P. annectens can provide a window into soft‐tissue anatomy and sarcopterygian fish fin function that complements the fossil data from related taxa. This work, combined with previous behavioral examination of P. annectens, illustrates that fin morphologies that do not appear to be capable of walking can accomplish that function, and may inform the interpretation of fossil anatomical evidence. J. Morphol. 275:431–441, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Summary Simultaneous measurements have been made of the efflux rates of tritiated water and radiosodium from the lung-fishProtopterus annectens under conditions in which the fish can either use its gills, its lungs or both for respiration. Tritiated water efflux rate was similar (43–44% h–1) when the fish was in oxygenated water with or without access to air but decreased slightly in deoxygenated water. An efflux rate constant of 44% h–1 obtained in oxygenated water is similar to those of other inactive fish in fresh water. The efflux rate constant for sodium was 0.84% h–1 and total sodium flux was comparable to that of fresh-water fish. The decrease in both tritiated water and sodium efflux rates in deoxygenated water are explained in terms of diversion of blood flow away from the functional gills to the lungs. Oxygen consumption was highest (38.7 ml kg–1 h–1) in deoxygenated water and lowest when the fish was out of water. Despite the reduced functional significance of the gill for respiration, it is still as permeable to water and electrolytes as that of fresh-water teleosts.This work was supported by a travel grant from the Commonwealth Universities Interchange Scheme of the British Council and laboratory facilities of the Department of Biological Sciences, University of Lancaster  相似文献   

13.
We describe the structure of the spleen of the African lungfish Protopterus annectens in freshwater conditions, and after 6?months of aestivation. The spleen is formed by cortical tissue that surrounds the splenic parenchyma. The cortex is a reticulum that contains two types of granulocytes, developing and mature plasma cells, and melanomacrophage centres (MMCs). The parenchyma is divided into lobules that show a subcapsular sinus and areas of red pulp and white pulp. Red pulp contains vascular sinuses and atypical cords formed by delicate trabeculae. White pulp also contains vascular sinuses and cords. Structural data indicate that red pulp is involved in erythropoiesis, destruction of effete erythrocytes, and plasma cell differentiation. White pulp appears to be involved in the production of immune responses. Macrophages and sinus endothelial cells constitute the reticulo-endothelial system of the spleen. After aestivation, the number of MMCs increases, and spleen tissue is infiltrated by lymphocytes, granulocytes, and monocytes. Also, white pulp is reduced, and sinus endothelial cells undergo vacuolar degeneration. Lungfish spleen shares structural characteristics with secondary lymphoid organs of both ectothermic and endothermic vertebrates, but appears to have evolved in unique ways.  相似文献   

14.
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia–reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.  相似文献   

15.
Lungfishes are the closest living relatives of the tetrapods, and the ear of recent lungfishes resembles the tetrapod ear more than the ear of ray-finned fishes and is therefore of interest for understanding the evolution of hearing in the early tetrapods. The water-to-land transition resulted in major changes in the tetrapod ear associated with the detection of air-borne sound pressure, as evidenced by the late and independent origins of tympanic ears in all of the major tetrapod groups. To investigate lungfish pressure and vibration detection, we measured the sensitivity and frequency responses of five West African lungfish (Protopterus annectens) using brainstem potentials evoked by calibrated sound and vibration stimuli in air and water. We find that the lungfish ear has good low-frequency vibration sensitivity, like recent amphibians, but poor sensitivity to air-borne sound. The skull shows measurable vibrations above 100 Hz when stimulated by air-borne sound, but the ear is apparently insensitive at these frequencies, suggesting that the lungfish ear is neither adapted nor pre-adapted for aerial hearing. Thus, if the lungfish ear is a model of the ear of early tetrapods, their auditory sensitivity was limited to very low frequencies on land, mostly mediated by substrate-borne vibrations.  相似文献   

16.
 Lymphatic capillaries are distributed throughout the body of lepidosirenid and protopterid Dipnoi, except in the central nervous system. They form small, interconnected units which are individually evacuated into nearby blood capillaries by lymphatic micropumps. The number of lymphatic micropumps varies considerably in different parts of the body. In fin areas, 30–50 per mm3 tissue may be considered normal in Protopterus annectens, but up to 105 per mm3 have been counted in an anterior fin of Lepidosiren paradoxa. Lymphatic capillaries are formed by thin endothelial cells with fine processes into the surrounding interstitial space. Occasionally there is a faint, discontinuous basal lamina. Pericytes, however, are completely absent. Microfibrils establish contact between endothelial cells and surrounding connective tissue fibers. The lymphatic micropumps are essentially spherical, contractile organs of 35–55 μm in diameter. Their central lumen is lined by extensions of a single endothelial cell. Additional endothelial cells form inflow and outflow valves. The endothelial layer is surrounded by a single large, highly specialized muscle cell. This spherical muscle cell has many perforations, allowing the passage of thin outward processes of the endothelial cell which form part of the suspension apparatus of the lymphatic micropump. The muscle cell establishes a specialized end-to-end contact between opposing parts of its own cell membrane. This contact is very similar to an intercalated disc in vertebrate heart muscle. Each lymphatic micropump is suspended within a cell-free tissue area by microfibrils which radiate from the lymphatic micropump into the surrounding connective tissue. The microfibrils are occasionally reinforced by single collagen fibers. The cell-free area around each lymphatic micropump appears as a bright halo in both light and electron micrographs. No type of lymphatic vessel other than lymphatic capillaries could be detected in the Dipnoi studied. Lepidosireniform Dipnoi are the only Vertebrata besides the Tetrapoda in which lymphatic vessels and characteristic lymphatic pumps have been documented. In addition, these Dipnoi and all Tetrapoda share the same overall design of blood circulation, which is not divided into a primary and a secondary system of vessels, as it is in Actinopterygii, Chondrichthyes, and Agnatha. Since there are primary and secondary blood vessels in the gills of Latimeria chalumnae, while the existence of lymphatic vessels has not been confirmed, general angioarchitecture should be taken into account as an important character when phylogenetic relationships among extant Sarcopterygii are discussed. Accepted: 7 October 1997  相似文献   

17.
The sharpness and thus information content of the retinal image in the eye depends on the optical quality of the lens and its accurate positioning in the eye. Multifocal lenses create well‐focused color images and are present in the eyes of all vertebrate groups studied to date (mammals, reptiles including birds, amphibians, and ray‐finned fishes) and occur even in lampreys, i.e., the most basal vertebrates with well‐developed eyes. Results from photoretinoscopy obtained in this study indicate that the Dipnoi (lungfishes), i.e., the closest piscine relatives to tetrapods, also possess multifocal lenses. Suspension of the lens is complex and sophisticated in teleosts (bony fishes) and tetrapods. We studied lens suspension using light and electron microscopy in one species of lamprey (Lampetra fluviatilis) and two species of African lungfish (Protopterus aethiopicus aethiopicus and Protopterus annectens annectens). A fibrous and highly transparent membrane suspends the lens in both of these phylogenetically widely separated vertebrate groups. The membrane attaches to the lens approximately along the lens equator, from where it extends to the ora retinalis. The material forming the membrane is similar in ultrastructure to microfibrils in the zonule fibers of tetrapods. The membrane, possibly in conjunction with the cornea, iris, and vitreous body, seems suitable for keeping the lens in the correct position for well‐focused imaging. Suspension of the lens by a multitude of zonule fibers in tetrapods may have evolved from a suspensory membrane similar to that in extant African lungfishes, a structure that seems to have appeared first in the lamprey‐like ancestors of allextant vertebrates. J. Morphol. 271:980–989, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
This study aimed to identify estivation-specific gene clusters through the determination of differential gene expressions in the liver of Protopterus annectens after 6 days of estivation in a mucus cocoon in air (normoxia) using suppression subtractive hybridization polymerase chain reaction. Our results demonstrated that 6 days of estivation in normoxia led to up-regulation of mRNA expressions of several genes related to urea synthesis, including carbamoyl phosphate synthetase (Cps), argininosuccinate synthetase and glutamine synthetase. They indicate that increased urea synthesis, despite being energy-intensive, is an important adaptive response of estivation. They also offer indirect support to the proposition that urea synthesis in this lungfish involved a Cps that uses glutamine as a substrate. In addition, up- or down-regulation of several gene clusters occurred in the liver of P. annectens after 6 days of estivation in normoxia. These estivation-specific genes were involved in the prevention of clot formation, activation of the lectin pathway for complement activation, conservation of minerals (e.g. iron and copper) and increased production of hemoglobin beta. Since there were up- and down-regulation of mRNA expressions of genes related to ribosomal proteins and translational elongation factors, there could be simultaneous increases in protein degradation and protein synthesis during the first 6 days (the induction phase) of estivation, confirming the importance of reconstruction of protein structures in preparation for the maintenance phase of estivation.  相似文献   

19.
The objective of this study was to elucidate how the African lungfish, Protopterus annectens, ameliorated ammonia toxicity during 12 or 46 days of aestivation in air or in mud. Twelve days of aestivation in air led to significant increases in contents of urea, but not ammonia, in tissues of P. annectens. The estimated rate of urea synthesis increased 2.7-fold despite the lack of changes in the activities of hepatic ornithine–urea cycle enzymes, but there was only a minor change in the estimated rate of ammonia production. After 46 days of aestivation in air, the ammonia content in the liver decreased significantly and contents of urea in all tissues studied increased significantly, indicating that the fish shifted to a combination of increased urea synthesis (1.4-fold of the day 0 value) and decreased ammonia production (56% of the day 0 value) to defend against ammonia toxicity. By contrast, 12 days of aestivation in mud produced only minor increases in tissue urea contents, with ammonia contents remained unchanged. This was apparently achieved through decreases in urea synthesis and ammonia production (40 and 15%, respectively, of the corresponding day 0 value). Surprisingly, 46 days of aestivation in mud resulted in no changes in tissue urea contents, indicating that profound suppressions of urea synthesis and ammonia production (2.6 and 1.2%, respectively, of the corresponding day 0 value) had occurred. This is the first report on such a phenomenon, and the reduction in ammonia production was so profound that it could be the greatest reduction known among animals. Since fish aestivated in mud had relatively low blood pO2 and muscle ATP content, they could have been exposed to hypoxia, which induced reductions in metabolic rate and ammonia production. Consequently, fish aestivating in mud had a lower dependency on increased urea synthesis to detoxify ammonia, which is energy intensive, than fish aestivating in air.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号