首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unprecedented increase of the power conversion efficiency of metal‐halide perovskite solar cells has significantly outpaced the understanding of their fundamental properties. One of the biggest puzzles of perovskites has been the exciton binding energy, which has proved to be difficult to determine experimentally. Many contradictory reports can be found in the literature with values of the exciton binding energy from a few meV to a few tens of meV. In this review the results of the last few years of intense investigation of the exciton physic in perovskite materials are summarized. In particular a critical overview of the different experimental approaches used to determine exciton binding energy is provided. The problem of exciton binding energy in the context of the polar nature of perovskite crystals and related polaron effects which have been neglected to date in most of work is discussed. It is shown that polaron effects can reconcile at least some of the experimental observations and controversy present in the literature. Finally, the current status of the exciton fine structure in perovskite materials is summarized. The peculiar carrier–phonon coupling can help to understand the intriguing efficiency of light emission from metal‐halide perovskites.  相似文献   

2.
Halide perovskite materials have achieved overwhelming success in various optoelectronic applications, especially perovskite solar cells and perovskite‐based light‐emitting diodes (P‐LEDs), owing to their outstanding optical and electric properties. It is widely believed that flat and mirror‐like perovskite films are imperative for achieving high device performance, while the potential of other perovskite morphologies, such as the emerging textured perovskite, is overlooked, which leaves plenty of room for further breakthroughs. Compared to flat and mirror‐like perovskites, textured perovskites with unique structures, e.g., coral‐like, maze‐like, column‐like or quasi‐core@shell assemblies, are more efficient at light harvesting and charge extraction, thus revolutionizing the pathways toward ultrahigh performance in perovskite‐based optoelectronic devices. Employing a textured perovskite morphology, the record of external quantum efficiency for P‐LEDs is demonstrated as 21.6%. In this research news, recent progress in the utilization of textured perovskite is summarized, with the emphasis on the preparation strategies and prominent optoelectronic properties. The impact of the textured morphology on light harvesting, carrier dynamic management, and device performance is highlighted. Finally, the challenges and great potential of employing these innovative morphologies in fabricating more efficient optoelectronic devices, or creating a new energy harvesting and conversion regime are also provided.  相似文献   

3.
Water wave energy is a promising renewable energy source that may alleviate the rising concerns over current resource depletion, but it is rarely exploited due to the lack of efficient energy harvesting technologies. In this work, a hybrid system with a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) based on an optimized inner topological structure is reported to effectively harvest water wave energy. The TENG with etched polytetrafluoroethylene films and Cu electrodes utilizing the contact‐freestanding mode is designed into a cubic structure, in which the EMG is well hybridized. An integration of TENG and EMG achieves mutual compensation of their own merits, enabling the hybrid system to deliver satisfactory output over a broad range of operation frequency. The output performance of TENG with varied inner topological structures is experimentally and theoretically compared, and a concept is proposed to further clarify the energy conversion efficiency, which should be considered in designing energy harvesting devices. The influences of oscillation frequency, amplitude, and dielectric materials on the output performance of the hybrid system are comprehensively studied on different platforms. Furthermore, the optimum operation frequency ranges for TENG and EMG are concluded. The proposed hybrid nanogenerator renders an effective approach toward large‐scale blue energy harvesting over a broad frequency range.  相似文献   

4.
Lead halide perovskites have recently emerged as promising absorbers for fabricating low‐cost and high‐efficiency thin‐film solar cells. The record power conversion efficiency of lead halide perovskite‐based solar cells has rapidly increased from 3.8% in 2009 to 22.1% in early 2016. Such rapid improvement is attributed to the superior and unique photovoltaic properties of lead halide perovskites, such as the extremely high optical absorption coefficients and super‐long photogenerated carrier lifetimes and diffusion lengths that are not seen in any other polycrystalline thin‐film solar cell materials. In the past a few years, theoretical approaches have been extensively applied to understand the fundamental mechanisms responsible for the superior photovoltaic properties of lead halide perovskites and have gained significant insights. This review article highlights the important theoretical results reported in literature for the understanding of the unique structural, electronic, optical, and defect properties of lead halide perovskite materials. For comparison, we also review the theoretical results reported in literature for some lead‐free perovskites, double perovskites, and nonperovskites.  相似文献   

5.
Electrocatalysis is the most important electrode reactions for many energy storage and conversion devices, which are considered a key part of the resolution of the energy crisis. Toward this end, design of efficient electrocatalysts is of critical significance. While extensive research has been extended to develop excellent electrocatalysts, the fundamental understanding of the relationship between the electronic and structural properties of electrocatalysts and the catalytic activity must remain a priority. In this review, the activity modulation of electrocatalysts by charge transfer effects, including intramolecular and intermolecular charge transfer, is systematically introduced. With suitable charge transfer modification, such as heteroatom doping, defect engineering, molecule functionalization, and heterojunctions, the electrocatalytic activity of carbon‐based electrocatalysts can be significantly boosted. The manipulation of the electronic structure of carbon‐based materials by charge transfer may serve as a fundamental mechanism for performance enhancement. After establishing an understanding of the relationship between catalytic activity and charge transfer, the opportunities and challenges for the design of electrocatalyst with charge transfer effects are discussed.  相似文献   

6.
Ocean wave energy is a promising renewable energy source, but harvesting such irregular, “random,” and mostly ultra‐low frequency energies is rather challenging due to technological limitations. Triboelectric nanogenerators (TENGs) provide a potential efficient technology for scavenging ocean wave energy. Here, a robust swing‐structured triboelectric nanogenerator (SS‐TENG) with high energy conversion efficiency for ultra‐low frequency water wave energy harvesting is reported. The swing structure inside the cylindrical TENG greatly elongates its operation time, accompanied with multiplied output frequency. The design of the air gap and flexible dielectric brushes enable mininized frictional resistance and sustainable triboelectric charges, leading to enhanced robustness and durability. The TENG performance is controlled by external triggering conditions, with a long swing time of 88 s and a high energy conversion efficiency, as well as undiminished performance after continuous triggering for 4 00 000 cycles. Furthermore, the SS‐TENG is demonstrated to effectively harvest water wave energy. Portable electronic devices are successfully powered for self‐powered sensing and environment monitoring. Due to the excellent performance of the distinctive mechanism and structure, the SS‐TENG in this work provides a good candidate for harvesting blue energy on a large scale.  相似文献   

7.
Till date, fabrication of piezoelectric nanogenerator (PNG) with highly durable, high power density, and high energy conversion efficiency is of great concern. Here a flexible, sensitive, cost effective hybrid piezoelectric nanogenerator (HPNG) developed by integrating flexible steel woven fabric electrodes into poly(vinylidene fluoride) (PVDF)/aluminum oxides decorated reduced graphene oxide (AlO‐rGO) nanocomposite film is reported where AlO‐rGO acts as nucleating agent for electroactive β‐phase formation. The HPNG exhibits reliable energy harvesting performance with high output, fast charging capability, and high durability compared with previously reported PVDF based PNGs. This HPNG is capable for harvesting energy from a variety and easy accessible biomechanical and mechanical energy sources such as, body movements (e.g., hand folding, jogging, heel pressing, and foot striking, etc.) and machine vibration. The HPNG exhibits high output power density and energy conversion efficiency, facilitating direct light on different color of several commercial light‐emitting diodes instantly and powers up many portable electronic devices like wrist watch, calculator, speaker, and mobile liquid crystal display (LCD) screen through capacitor charging. More importantly, HPNG retains its performance after long compression cycles (≈158 400), demonstrating great promise as a piezoelectric energy harvester toward practical applications in harvesting biomechanical and mechanical energy for self‐powered systems.  相似文献   

8.
纳米发电机(摩擦纳米发电机和压电纳米发电机)技术自被提出以来得到了迅速发展,该技术可将人体动能、风能、声波能、海洋能等各种机械能转化为电能,并应用于自驱动健康监测及生理功能调节,如脉搏传感、神经电刺激、心脏起搏等。文中综述了纳米发电机的结构、工作原理、输出性能及其在循环系统、神经系统、生物组织、睡眠及水下救援等方面的最新研究进展,并在此基础上进一步分析了纳米发电机技术应用到临床治疗所面临的挑战。未来纳米发电机有望成为辅助电源,甚至取代传统电池类电源用于驱动医疗电子器件,实现人体自驱动健康监测及生理功能调节。  相似文献   

9.
As an alternative technology, stretchable electronics attract long‐lasting attention. A newly‐designed stretchable nanogenerator with unique dual‐mode energy conversion is reported. The ability of converting the input mechanical stimuli to either electric or light output is achieved by monolithically integrating a transparent single‐electrode triboelectric nanogenerator (S‐TENG) with a ZnS based mechanoluminescence (ML) composite. This stretchable device with versatile functions promotes the development of the smart systems to efficiently and diversely utilize ubiquitous mechanical energy and demonstrates great potential for artificial e‐skins.  相似文献   

10.
Currently, tremendous efforts are being devoted to develop high‐performance electrochemical energy‐storage materials and devices. Conventional electrochemical energy‐storage systems are confronted with great challenges to achieve high energy density, long cycle‐life, excellent biocompatibility and environmental friendliness. The biological energy metabolism and storage systems have appealing merits of high efficiency, sophisticated regulation, clean and renewability, and the rational design and fabrication of advanced electrochemical energy‐storage materials and smart devices inspired by nature have made some breakthrough progresses, recently. In this review, we summarize the latest developments in the field of nature‐inspired electrochemical energy‐storage materials and devices. Specifically, the nature‐inspired exploration, preparation and modification of electrochemical energy‐storage related materials including the active materials, binders, and separators are introduced. Furthermore, nature‐inspired design and fabrication of smart energy‐storage devices such as self‐healing supercapacitors, supercapacitors with ultrahigh operating voltage, and self‐rechargeable batteries are also discussed. The review aims to provide insights and expanded research perspectives for further study in this exciting field based on our comprehensive discussions.  相似文献   

11.
Freestanding layered membrane–based devices have broad applications in highly efficient energy‐storage/conversion systems. The liquid–solid interface is considered as a unique yet versatile interface for constructing such layered membrane–based devices. In this review, the authors outline recent developments in the fabrication of soft materials to functionalize layered devices from the aspect of liquid–solid interfacial assembly and engineering arts. Seven liquid–solid interfacial assembly strategies, including flow‐directed, superlattice, solvent‐casting, evaporation‐induced, dip‐coating, spinning, and electrospinning assemblies, are comprehensively highlighted with a focus on their synthetic pathways, formation mechanisms, and interface engineering strategies. Meanwhile, recent representative works on layered membrane–based devices for electrochemical energy applications are presented. Finally, challenges and opportunities of this research area are highlighted in order to stimulate future developments. This review not only offers comprehensive and practical approaches to assemble liquid–solid interfaces with soft materials for various important layered electrochemical energy devices but also sheds lights on fundamental insights by thoughtful discussions on performance enhancement mechanisms of these electrochemical energy systems.  相似文献   

12.
Three‐dimensional (3D) printing, a layer‐by‐layer deposition technology, has a revolutionary role in a broad range of applications. As an emerging advanced fabrication technology, it has drawn growing interest in the field of electrochemical energy storage because of its inherent advantages including the freeform construction and controllable 3D structural prototyping. This article focuses on the topic of 3D‐printed electrochemical energy storage devices (EESDs), which bridge advanced electrochemical energy storage and future additive manufacturing. Basic 3D printing systems and material considerations are described to provide a fundamental understanding of printing technologies for the fabrication of EESDs. The performance metrics of 3D‐printed EESDs are then given and the related performance optimization strategies are discussed. Next, the recent advances of 3D‐printed EESDs, including sandwich‐type and in‐plane architectures, are summarized. Conclusions and future perspectives with some unique challenges and important directions are then discussed. It can be expected that, with the help of 3D printing technology, the development of advanced electrochemical energy storage systems will be greatly promoted.  相似文献   

13.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   

14.
High‐performance and lost‐cost lithium‐ion and sodium‐ion batteries are highly desirable for a wide range of applications including portable electronic devices, transportation (e.g., electric vehicles, hybrid vehicles, etc.), and renewable energy storage systems. Great research efforts have been devoted to developing alternative anode materials with superior electrochemical properties since the anode materials used are closely related to the capacity and safety characteristics of the batteries. With the theoretical capacity of 2596 mA h g?1, phosphorus is considered to be the highest capacity anode material for sodium‐ion batteries and one of the most attractive anode materials for lithium‐ion batteries. This work provides a comprehensive study on the most recent advancements in the rational design of phosphorus‐based anode materials for both lithium‐ion and sodium‐ion batteries. The currently available approaches to phosphorus‐based composites along with their merits and challenges are summarized and discussed. Furthermore, some present underpinning issues and future prospects for the further development of advanced phosphorus‐based materials for energy storage/conversion systems are discussed.  相似文献   

15.
This review article presents and discusses the recent progress made in the stabilization, protection, improvement, and design of halide perovskite‐based photocatalysts, photoelectrodes, and devices for solar‐to‐chemical fuel conversion. With the target of water splitting, hydrogen iodide splitting, and CO2 reduction reactions, the strategies established for halide perovskites used in photocatalytic particle‐suspension systems, photoelectrode thin‐film systems, and photovoltaic‐(photo)electrocatalysis tandem systems are organized and introduced. Moreover, recent achievements in discovering new and stable halide perovskite materials, developing protective and functional shells and layers, designing proper reaction solution systems, and tandem device configurations are emphasized and discussed. Perspectives on the future design of halide perovskite materials and devices for solar‐to‐chemical fuel conversion are provided. This review may serve as a guide for researchers interested in utilizing halide perovskite materials for solar‐to‐chemical fuel conversion.  相似文献   

16.
The molecular mechanism of ATP synthesis by F1F0-ATP synthase   总被引:4,自引:0,他引:4  
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

17.
Electrical double layer capacitors (EDLCs) are nowadays considered one of the most important energy storage technologies. In recent years, great efforts have been made toward the development of novel materials, active and inactive, suitable for the realization of advanced EDLCs displaying higher performance, especially in terms of energy, compared to the state‐of‐the‐art devices. Nevertheless, the applicability of these materials in real devices and the industrial requirements related to the development of innovative EDLCs are not always properly addressed by the scientific community. This short review addresses these two fundamental aspects, with the aim to supply an updated set of information about the industrial requirements for the materials usable in commercial EDLCs. Additionally, the review also provides an updated overview about the present and estimated future market size of EDLCs as well as present and future applications of this technology addressing the market‐specific needs. This “application‐oriented” information is pivotal for a successful development and large‐scale production of advanced EDLCs.  相似文献   

18.
The air breakdown phenomenon is generally considered as a negative effect in previous research on triboelectric nanogenerators (TENGs), which is always accompanied by air ionization. Here, by utilizing the air breakdown induced ionized air channel, a direct‐current triboelectric nanogenerator (DC‐TENG) is designed for harvesting contact‐separation mechanical energy. During working process, the charges first transfer from bottom to top electrodes through an external circuit in contact state, then flow back via the ionized air channel created by air breakdown in the separation process. So a unidirectional flow of electrical charges can be observed in the external circuit. With repeating contact‐separation cycles, continuous pulsed DC output through the external circuit can be realized. This working mechanism was verified by real‐time electrode potential monitoring, photocurrent signal detection, and controllable discharging observation. The DC‐TENG can be used for directly and continuously charging an energy storage unit and/or driving electronic devices without using a bridge rectifier. Owing to its simplicity in structure, the mechanism is further applied to fabricate the first flexible DC‐TENG. This research provides a significant fundamental study for DC‐TENG technology and may expand its application in flexible electronics and flexible self‐charging power systems.  相似文献   

19.
Hybrid Perovskite (HP) semiconductors have been skyrocketing the field of new generation photovoltaics and expanding into advanced optoelectronics. Perovskite photovoltaics (PV) can give a tremendous push to the green energy transition, which calls for efficient, low cost, but also environmentally friendly solutions. Halide perovskites present a serious drawback related to the presence of toxic materials, i.e., lead, with its associated health and environment concerns. These concerns severely hamper their commercialization. So far, only a few viable alternatives to Pb have been found, which lag behind in terms of power conversion efficiency. Here, a forward‐looking perspective is developed presenting different potential strategies to overcome the environmental and health issues related to the use and release of lead for operative HP solar cells. The possible lead‐leakage paths and related “remediation” tools are reviewed, and possible strategies are collated with a view to beginning a new era of lead containing HP devices. Finally, through a comparison with existing lead‐based technology, a comparative study is presented to provide the tools that are essential for a real evaluation of the impact of lead content on HP commercialization.  相似文献   

20.
Halide perovskites have emerged as materials for high‐performance optoelectronic devices. Often, progress made to date in terms of higher efficiency and stability is based on increasing material complexity, i.e., formation of multicomponent halide perovskites with multiple cations and anions. In this review article, the use of in situ optical methods, namely, photoluminescence (PL) and UV‐vis, that provide access to the relevant time and length scales to ascertain chemistry–property relationships by monitoring evolving properties is discussed. Additionally, because halide perovskites are electron/ion conductors and prone to solid‐state ion transport under various external stimuli, application of these optical methods in the context of ionic movement is described to reveal mechanistic insights. Finally, examples of using in situ PL and UV‐vis to study degradation and phase transitions are reviewed to demonstrate the wealth of information that can be obtained regarding many different aspects of ongoing research activities in the field of halide perovskites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号