首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two orders of saturable binding sites for L-T3 were detected on purified rat liver plasma membranes--a high affinity, low capacity binding site with a Kd of 3.2 ± 0.5 nM, and a lower affinity, higher capacity site with a Kd of 220 ± 50 nM. Competition-inhibition studies revealed that both D-T3 and L-T4 (two compounds with lower biological potencies than L-T3) were also less potent than L-T3 in competing for these binding sites. The present studies demonstrate, therefore, the presence of specific thyroid hormone binding sites on rat liver plasma membranes. In addition, they suggest that these sites may have a role both in mediating the known effects of thyroid hormones on membrane functions, and in regulating the entry of thyroid hormones into target cells.  相似文献   

2.
Human serum albumin (HSA) is one of the main proteins involved in the binding of drugs and small solutes in blood or serum. This study examined the changes in chromatographic properties that occur for immobilized HSA following the chemical modification of HSA's lone tryptophan residue (Trp-214). Trp-214 was reacted with o-nitrophenylsulfenyl chloride, followed by immobilization of the modified protein and normal HSA onto separate silica-based HPLC supports. The binding properties of the modified and normal HSA were then analyzed and compared by using frontal analysis and zonal elution experiments employing R/S-warfarin and l-tryptophan as probe compounds for the warfarin and indole binding regions of HSA. The modified HSA was found to have the same number of binding sites as normal HSA for R-warfarin and l-tryptophan but lower association equilibrium constants for these test solutes. Zonal elution studies with R- and S-warfarin on the modified HSA column demonstrated the importance of Trp-214 in determining the stereoselective binding of HSA for these agents. These studies also indicated that tryptophan modification can alter HSA-based separations for chiral solutes.  相似文献   

3.
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Binding of carbenicillin (CBPC) epimers to human serum albumin (HSA) was found to be stereoselective. Epimer-epimer interaction was also observed in the binding to HSA. There were at least three binding sites on HSA for CBPC epimers, one of which (stereoselective site) was more in favor of S-CBPC than R-CBPC. At the stereoselective site, the binding constant of S-CBPC was approximately 4-fold greater than that of R-CBPC. The affinities to other binding sites (non-stereoselective sites) were similar between the epimers, and the affinity of S-CBPC of the non-stereoselective sites was much smaller than that for the stereoselective site. R-CBPC and S-CBPC appeared to displace each other at all the binding sites, i.e., the binding of the epimers was competitive at the non-stereoselective sites as well as at the stereoselective site. By using site marker ligands, it was revealed that CBPC epimers may bind to Site I (warfarin binding site), but not to Site II (diazepam binding site). A binding model with an assumption of competitive interactions at all the binding sites simulated the binding characteristics of CBPC epimers fairly well. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high-affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (±0.2) × 105 and 3.5 (±3.0) × 102 M−1 for acetohexamide and values of 8.7 (±0.6) × 104 and 8.1 (±1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high-affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug-binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (±0.1) × 105 and 4.3 (±0.3) × 104 M−1, respectively, at 37 °C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (±0.2) × 104 and 5.3 (±0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug–protein interactions.  相似文献   

6.
7.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

8.
A study was made of the binding of a fluorescent probe K-35 (N-(carboxyphenyl)imide of 4-(dimethylamino)naphthalic acid), used as an indicator of albumin structural changes in pathology, to human serum albumin (HSA). Based on the data on the fluorescence decay of the probe, four types of site of K-35 binding to HSA have been recognized, which differ in fluorescence decay time (τ) and binding constant (K). Probe molecules bound to the first type of site have a decay time of 8–10 ns; this value corresponds to a high fluorescence quantum yield of about 0.7. These sites have a maximal binding constant, K 1 = 5 · 104 M−1. The τ2 of the second type of site is close to 3.6 ns and K 2 = 1 · 104 M−1, which is much lower than K 1; however, the number of these sites is several times greater. The number of sites of the third type and the binding constant are close to those of the second type, but the decay time τ3 is 1 ns, which is significantly lower than τ2. The binding of K-35 to sites of the second and the third types is characterized by a positive cooperativity. Their properties are similar but not completely identical. The total number of sites of these three types is about two per one HSA molecule. There are also one-two sites of the fourth type where bound K-35 molecules have a very short decay time τ4 ≪ 1, i.e., are virtually nonfluorescent, and K 4 = 1 · 104 M−1. The major contribution to the steady-state fluorescence is made by probe molecules bound to sites of the first and second types. As a rule, the concentration of albumin binding sites in blood is significantly higher than the concentration of metabolites and xenobiotics transferred by albumin. Therefore, the metabolite—or the probe in these experiments—is distributed among different sites in accordance with their K i n i values (n i is the number of sites of the i-th type per albumin molecule). The low occupancy of the sites results in an approximately equal number of K-35 molecules bound to different sites of types 1, 2, and 3. The competition of K-35 with phenylbutazone, a marker of the albumin drug-binding site I, allows one to suggest that the K-35 site of the first type is localized exactly in the drug site I region, while the sites of the second and third types are close to it.  相似文献   

9.
The delivery of drugs to the brain is complicated by the multiple factors including low blood–brain barrier (BBB) passive permeability, active BBB efflux systems, and plasma protein binding. Thus, a detailed understanding of the transport of the new potent substances through the membranes is vitally important and their physico-chemical characteristics should be analyzed at first. This work presents an evaluation of drug likeness of eight 7-O-arylpiperazinylcoumarin derivatives with high affinity towards serotoninergic receptors 5-HT1A and 5-HT2A with particular analysis of the requirements for the CNS chemotherapeutics. The binding constants to human serum albumin (HSA) were determined at physiological pH using fluorescence spectroscopy, and then their mode of action was explained by analysis of theoretical HSA complexes. Dynamic simulation of systems allowed for reliable evaluation of the interaction strength. The analyzed coumarins were able to pass BBB, and they present good drug likeness properties. They showed high affinities to HSA (log KQ = 5.3–6.0 which corresponds to −8.12 to −7.15 kcalmol−1 of Gibbs free energy). The changes of the emission intensity upon binding to HSA were scrutinized showing the different mode of action for 4-phenylpiperazinylcoumarins. The values of computed Gibbs free energy and determined on the basis of experimentally obtained binding constants log KQ coincide suggesting a good quality of the theoretical model. Overall the 8-acetyl-7-O-arylpiperazinyl-4-methylcoumarin derivatives represent valuable lead compounds to be further tested in various preclinical assays as a possible chemotherapeutics against CNS diseases. Studied coumarins can be metabolized by cytochrome P450 to aldehydes and hydroxy derivatives. The existence of other binding sites inside HSA than Sudlow’s site 1 was postulated. The longer aliphatic linker between coumarin and piperazine moieties favored binding to HSA in other than Sudlow site 1 pocket.  相似文献   

10.
Binding of sulbenicillin (SBPC) isomers to human serum albumin (HSA) was stereoselective. There were at least two classes of binding sites on HSA for SBPC isomers. At the stereoselective high affinity site, binding was in favor of R-SBPC, the binding constant of R-SBPC being approximately 2.3-fold greater than that of S-SBPC. By using site marker ligands, it was revealed that the stereoselective site was Site I (warfarin binding site). Affinity for the low affinity (nonstereoselective) site was similar for the diastereomers, approximately 7--30-fold lower than for the stereoselective site. R-SBPC and S-SBPC appeared to displace each other competitively at both binding sites. On the other hand, R-SBPC was degraded much faster than S-SBPC in the presence of HSA, with a degradation rate constant approximately 7-fold greater for R-SBPC than for S-SBPC. The degradation of R-SBPC was inhibited in the presence of warfarin and dependent on the concentration of R-SBPC bound to Site I. The results demonstrate that Site I is responsible for the stereoselective degradation.  相似文献   

11.
In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.  相似文献   

12.
Human serum heme–albumin (HSA–heme–Fe) displays reactivity and spectroscopic properties similar to those of heme proteins. Here, the nitrite reductase activity of ferrous HSA–heme–Fe [HSA–heme–Fe(II)] is reported. The value of the second-order rate constant for the reduction of $ {\text{NO}}_{2}^{ - } $ to NO and the concomitant formation of nitrosylated HSA–heme–Fe(II) (i.e., k on) is 1.3 M?1 s?1 at pH 7.4 and 20 °C. Values of k on increase by about one order of magnitude for each pH unit decrease between pH 6.5 to 8.2, indicating that the reaction requires one proton. Warfarin inhibits the HSA–heme–Fe(II) reductase activity, highlighting the allosteric linkage between the heme binding site [also named the fatty acid (FA) binding site 1; FA1] and the drug-binding cleft FA2. The dissociation equilibrium constant for warfarin binding to HSA–heme–Fe(II) is (3.1 ± 0.4) × 10?4 M at pH 7.4 and 20 °C. These results: (1) represent the first evidence for the $ {\text{NO}}_{2}^{ - } $ reductase activity of HSA–heme–Fe(II), (2) highlight the role of drugs (e.g., warfarin) in modulating HSA(–heme–Fe) functions, and (3) strongly support the view that HSA acts not only as a heme carrier but also displays transient heme-based reactivity.  相似文献   

13.
A computational approach to designing a peptide-based ligand for the purification of human serum albumin (HSA) was undertaken using molecular docking and molecular dynamics (MD) simulation. A three-step procedure was performed to design a specific ligand for HSA. Based on the candidate pocket structure of HSA (warfarin binding site), a peptide library was built. These peptides were then docked into the pocket of HSA using the GOLD program. The GOLDscore values were used to determine the affinity of peptides for HSA. Consequently, the dipeptide Trp–Trp, which shows a high GOLDscore value, was selected and linked to a spacer arm of Lys[CO(CH2)5NH] on the surface of ECH-lysine sepharose 4 gel. For further evaluation, the Autodock Vina program was used to dock the linked compound into the pocket of HSA. The docking simulation was performed to obtain a first guess of the binding structure of the spacer–Trp–Trp–HSA complex and subsequently analyzed by MD simulations to assess the reliability of the docking results. These MD simulations indicated that the ligand–HSA complex remains stable, and water molecules can bridge between the ligand and the protein by hydrogen bonds. Finally, absorption spectroscopic studies were performed to illustrate the appropriateness of the binding affinity of the designed ligand toward HSA. These studies demonstrate that the designed dipeptide can bind preferentially to the warfarin binding site. Graphical Abstract
Three-step computational approach to the design of a dipeptide ligand for human serum albumin purification exploiting structure-based docking and molecular dynamics simulation  相似文献   

14.
In this study, Farnesiferol C was introduced as an anti-colon cancer agent. Its cytotoxicity was investigated on two cancer cell lines, HCT116 and CT26, and mesenchymal stem cells (MSCs) as normal cells employing MTT assay. Moreover, Farnesiferol C interactions with ct-DNA and HSA were investigated by various techniques. The IC50 values of Farnesiferol C on HCT116 and CT26 cells were 42 and 46?μM, respectively, while its IC50 value on MSCs cells was 92?μM, indicating that Farnesiferol C was more efficacious against cancer cell lines than normal cells. DNA competitive binding studies, viscosity and zeta potential measurements confirmed that Farnesiferol C bound to DNA through intercalation binding. HSA binding investigations revealed that there were two different binding sites for Far C on HSA with higher binding affinity in site 2 compared to site 1. Furthermore, Farnesiferol C could bind to HSA and quench its intrinsic fluorescence in a static quenching mechanism, with a distance of 2.54?nm. Competitive binding in the presence of warfarin and ibuprofen was carried out and the resulting quenching constant was strongly changed in the presence of warfarin. Consequently, Farnesiferol C most probably will be located within sub-domain IIA. In this study, molecular modeling buttressed and confirmed our laboratory results. Conclusively, we proposed that DNA is an appropriate target for Farnesiferol C. Therefore, Farnesiferol C and its semisynthetic analogues can be one of the priority innovations in research on anticancer drugs.  相似文献   

15.
16.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

17.
Binding of hippuric acid (HA), a uremic toxin, with human serum albumin (HSA) has been examined by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), molecular docking, circular dichroism (CD) and fluorescence spectroscopy to understand the reason that govern its impaired elimination through hemodialysis. ITC results shows that the HA binds with HSA at high (K b ∼104) and low affinity (K b ∼103) sites whereas spectroscopic results predict binding at a single site (K b∼103). The HA form complex with HSA that involves electrostatic, hydrogen and hydrophobic binding forces as illustrated by calculated thermodynamic parameters. Molecular docking and displacement studies collectively revealed that HA bound to both site I and site II; however, relatively strongly to the later. Esterase-like activity of HSA confirms the involvement of Arg410 and Tyr411 of Sudlow site II in binding of HA. CD results show slight conformational changes occurs in the protein upon ligation that may be responsible for the discrepancy in van’t Hoff and calorimetric enthalpy change. Furthermore, an increase in and is observed from DSC results that indicate increase in stability of HSA upon binding to HA. The combined results provide that HA binds to HSA and thus its elimination is hindered.  相似文献   

18.
Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA.  相似文献   

19.
Zonal elution and high-performance affinity chromatography were used to examine interactions of the drugs digitoxin and acetyldigitoxin with the protein human serum albumin (HSA). This was done by injecting small amounts of digitoxin and acetyldigitoxin onto an immobilized HSA column in the presence of mobile phases that contained various concentrations of digitoxin, acetyldigitoxin or other solutes as competing agents. A fixed concentration of β-cyclodextrin was also present in the mobile phase as a solubilising agent. It was found that digitoxin and acetyldigitoxin each had strong interactions at a single common binding site on HSA, but with slightly different equilibrium constants for this region. Neither compound showed any competition with warfarin or L-tryptophan, which were used as probes for binding at the warfarin-azapropazone and indole-benzodiazepine sites of HSA. These results confirmed the presence of a separate binding region on HSA for digitoxin-related compounds.  相似文献   

20.
Albumin is known to be able to cleave ether bonds in organophosphates (OPs). Amino acids responsible for esterase and pseudo-esterase albumin activity towards OPs are not yet finally identified. Presumably, Sudlow’s site I with the Tyr150 residue shows a “true” esterase activity, while Sudlow’s II site with the Tyr411 residue—a pseudo-esterase one. Both human (HSA) and bovine (BSA) serum albumins were used in in vitro studies of albumin (pseudo)esterase activity towards OPs. There is a body of evidence that the efficiency of interaction of different xenobiotics differs for these two proteins. Using paraoxon as an example, the aim of this study was to conduct an in silico study of the OP interaction with the previously identified potential sites of HSA and BSA (pseudo)esterase activity, to estimate the possibility of enzymatic reactions at these sites, to comparatively analyze these proteins from the evolutionary viewpoint, and to assess the possibility of extrapolating the experimental data obtained on BSA to a human organism. Molecular docking of paraoxon into the sites of HSA and BSA potential (pseudo)esterase activity has been performed. Conformational changes occurring in the resultant complexes with time have been studied by molecular dynamics simulation. It has been shown that Sudlow’s site II is less liable to evolutionary changes. Binding of modulators at other sites is not required for productive sorption of OPs and the phosphorylation reaction at Sudlow’s site II. It has been concluded that simi lar results for HSA and BSA could be expected for the irreversible binding of OPs at Sudlow’s site II. Since Sudlow’s site I is less conservative, diff erent binding efficiency could be expected for rigid molecules or optically active compounds. Both for HSA and BSA, productive binding of OPs at Sudlow’s site I is possible only after changes in the albumin molecule structure induced by binding of modulators at other sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号