首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effect of ovarian cavity fluid (OCF) from a surfperch Neoditrema ransonnetii on the cytotoxic activity of leucocytes was investigated. In an assay targeting RTG‐2, a cell line derived from rainbow trout Oncorhynchus mykiss gonads, leucocytes from both the spleen and head kidney showed spontaneous killing activity. Pre‐incubation with OCF significantly suppressed the cytotoxic activity of head‐kidney leucocytes towards RTG‐2. This suppressive activity was due to the presence of low molecular‐mass materials. These results suggest that OCF plays significant roles in pregnancy by its ability to modulate cytotoxicity with maternal leucocytes.  相似文献   

2.
A general approach is developed for the synthesis of 2D porous carbon nanosheets (PCNS) from bio‐sources derived carbon precursors (gelatin) by an integrated procedure of intercalation, pyrolysis, and activation. Montmorillonite with layered nanospace is used as a nanotemplate or nanoreactor to confine and modulate the transformation of gelatin, further leading to the formation of 2D nanosheet‐shaped carbon materials. The as‐made 2D PCNS exhibits a significantly improved rate performance, with a high specific capacitance of 246 F g?1 and capacitance retention of 82% at 100 A g?1, being nearly twice that of microsized activated carbon particulates directly from gelatin (131 F g?1, 44%). The shortened ion transport distance in the nanoscaled dimension and modulated porous structure is responsible for such an enhanced superior rate capability. More importantly, the present strategy can be extended to other bio‐sources to create 2D PCNS as electrode materials with high‐rate performance. This will also provide a potential strategy for configuring 2D nanostructured carbon electrode materials with a short ion transport distance for supercapacitors and other carbon‐related energy storage and conversion devices.  相似文献   

3.
This study was conducted to examine the nutritional status of the grasshopper (Oxya chinensis formosana, OCF) as human food, exploring it as an alternative edible resource. Analysis of free amino acid shows that there are various essential amino acids in addition to saturated and unsaturated fatty acids in OCF dried powder. Analysis of the mineral contents and vitamins of dried OCF indicates that it is rich in calcium, vitamin B6, and niacin. The heavy metal content of OCF recorded was low, making it safe for human consumption: OCF had plumbum at 0.01–0.03 mg/100 g, cadmium at 0.002–0.005 mg/100 g, arsenic at 0.07–0.17 mg/100 g, and mercury at 0.0003–0.0007 mg/100 g. In conclusion, given its high nutritive quality in terms of proteins and fats, coupled with lower heavy metal content, it would be recommended to use the grasshopper (OCF) as substitute to the traditional sources of protein.  相似文献   

4.
Micro‐supercapacitors (MSCs) as a new class of energy storage devices have attracted great attention due to their unique merits. However, the narrow operating voltage, slow frequency response, and relatively low energy density of MSCs are still insufficient. Therefore, an effective strategy to improve their electrochemical performance by innovating upon the design from various aspects remains a huge challenge. Here, surface and structural engineering by downsizing to quantum dot scale, doping heteroatoms, creating more structural defects, and introducing rich functional groups to two dimensional (2D) materials is employed to tailor their physicochemical properties. The resulting nitrogen‐doped graphene quantum dots (N‐GQDs) and molybdenum disulfide quantum dots (MoS2‐QDs) show outstanding electrochemical performance as negative and positive electrode materials, respectively. Importantly, the obtained N‐GQDs//MoS2‐QDs asymmetric MSCs device exhibits a large operating voltage up to 1.5 V (far exceeding that of most reported MSCs), an ultrafast frequency response (with a short time constant of 0.087 ms), a high energy density of 0.55 mWh cm?3, and long‐term cycling stability. This work not only provides a novel concept for the design of MSCs with enhanced performance but also may have broad application in other energy storage and conversion devices based on QDs materials.  相似文献   

5.
Promising lithium–oxygen batteries (LOBs) with extra‐high capacities have attracted increasing attention for use in future electric devices. However, the challenges facing this complicated battery system still limit their practical applications. These challenges mainly consist of inefficient product evolution and low‐activity catalysts. In present work, a cation occupying, modified 3D‐architecture NiFeO cubic spinel is constructed via superassembly strategy to achieve a high rate, stable electrocatalyst for LOBs. The octahedron predominant spinel provides a stable polycrystal structure and optimized electronic structure, which dominates the discharge/charge products evolution with multiformation kinetics of crystal Li2O2 and Li2?xO2 at low and high rate conditions and energetically favors the mass transport between the electrode/electrolyte interface. Simultaneously, the porous NiFeO framework provides adequate spaces for Li2O2 accommodation and complex channels for sufficient electrolyte, oxygen, and ion transportation, which dramatically alter the cathode catalysis for an unprecedented performance. As a consequence, a large specific capacity of 23413 mAh g?1 and an excellent cyclability of 193 cycles at a high current of 1000 mA g?1, and 300 cycles at a current of 500 mA g?1, are achieved. The present work provides intrinsic insights into designing high‐performance metal oxide electrocatalysts for Li–O2 batteries with fine‐tuned electronic and frame structure.  相似文献   

6.
At low extracellular pH (4–6), net uptake of potassium by Neurospora is a simple exponential process which obeys Michaelis kinetics as a function of [K]o. At high pH, however, potassium uptake becomes considerably more complex, and can be resolved into two distinct exponential components. The fast component (time constant = 1.2 min) is matched quantitatively by a rapid loss of sodium; it is attributed to ion exchange within the cell wall, since it is comparatively insensitive to low temperature and metabolic inhibitors. By contrast, the slower component (time constant = 10.9 min) is inhibited markedly at 0°C and by CN and deoxycorticosterone, and is thought to represent carrier-mediated transport of potassium across the cell membrane. This transport process exhibits sigmoid kinetics as a function of [K]o; the data can be fitted satisfactorily by two different two-site models (one involving a carrier site and a modifier site, the other an allosteric model). Either of these models could also accommodate the simple Michaelis kinetics at low pH.  相似文献   

7.
2D layer‐structured materials are considered a promising candidate as a coupling material in lithium sulfur batteries (LSBs) due to their high surface‐volume ratio and abundant active binding sites, which can efficiently mitigate shuttling of soluble polysulfides. Herein, an electrochemical Li intercalation and exfoliation strategy is used to prepare 2D Sb2S3 nanosheets (SSNSs), which are incorporated onto a separator in LSBs as a new 2D coupling material for the first time. The cells containing a rationally designed separator which is coated with an SSNS/carbon nanotube (CNT) coupling layer deliver a much improved specific capacity with a remarkable 0.05% decay rate for over 200 cycles at a current density of 2 C. The capability of the SSNSs to entrap polysulfides through their favorable interfacial functionality and the high electrical conductivity of the CNT network facilitates recycling of active materials. The first‐principle calculations verify the important roles of SSNSs, which demonstrate ideal binding strengths (1.33–2.14 eV) to entrap Li2Sx as well as a low‐energy barrier (189 meV) for Li diffusion. These findings offer new insights into discovering novel coupling layers for high‐performance LSBs and shed new light on the application of 2D layer‐structured materials in energy storage systems.  相似文献   

8.
Tantalum nitride (Ta3N5) with a suitable bandgap (≈2 eV) is regarded as one of the most promising photocatalysts for efficient solar energy harvesting and conversion. However, Ta3N5 suffers from low hydrogen production activity due to the low carrier mobility and fast carrier recombination. Thus, the design of Ta3N5 nanostructures to facilitate charge carrier transport and improve photocatalytic performance remains a challenge. This study reports a new type of ultrathin (≈2 nm) Ta3N5 nanomesh with high specific surface area (284.6 m2 g?1) and excellent crystallinity by an innovative bottom‐up graphene oxide templated strategy. The resulting Ta3N5 nanomeshes demonstrate drastically improved electron transport ability and prolonged lifetime of charge carriers, due to the nature of high surface area and excellent crystallinity. As a result, when used as photocatalysts, the Ta3N5 nanomeshes exhibit a greater than tenfold improvement in solar hydrogen production compared to bulk counterparts. This work provides an effective and generic strategy for designing 2D ultrathin nanomesh structures for nonlayered materials with improved catalytic activity.  相似文献   

9.
Sodium ion batteries are now attracting great attention, mainly because of the abundance of sodium resources and their cheap raw materials. 2D materials possess a unique structure for sodium storage. Among them, transition metal chalcogenides exhibit significant potential for rechargeable battery devices due to their tunable composition, remarkable structural stability, fast ion transport, and robust kinetics. Herein, ultrathin TiS2 nanosheets are synthesized by a shear‐mixing method and exhibit outstanding cycling performance (386 mAh g?1 after 200 cycles at 0.2 A g?1). To clarify the variations of galvanostatic curves and superior cycling performance, the mechanism and morphology changes are systematically investigated. This facile synthesis method is expected to shed light on the preparation of ultrathin 2D materials, whose unique morphologies could easily enable their application in rechargeable batteries.  相似文献   

10.
Lithium–sulfur (Li–S) batteries hold great promise as a next‐generation battery system because of their extremely high theoretical energy density and low cost. However, ready lithium polysulfide (LiPS) diffusion and sluggish redox kinetics hamper their cyclability and rate capability. Herein, porphyrin‐derived graphene‐based nanosheets (PNG) are proposed for Li–S batteries, which are achieved by pyrolyzing a conformal and thin layer of 2D porphyrin organic framework on graphene to form carbon nanosheets with a spatially engineered nitrogen‐dopant‐enriched skin and a highly conductive skeleton. The atomic skin is decorated with fully exposed lithiophilic sites to afford strong chemisorption to LiPSs and improve electrolyte wettability, while graphene substrate provides speedy electron transport to facilitate redox kinetics of sulfur species. The use of PNG as a lightweight interlayer enables efficient operation of Li–S batteries in terms of superb cycle stability (cyclic decay rate of 0.099% during 300 cycles at 0.5 C), good rate capability (988 mAh g?1 at 2.0 C), and impressive sulfur loading (areal capacity of 8.81 mAh cm?2 at a sulfur loading of 8.9 mg cm?2). The distinct interfacial strategy is expected to apply to other conversion reaction batteries relying on dissolution–precipitation mechanisms and requiring interfacial charge‐ and mass‐transport‐mediation concurrently.  相似文献   

11.
Composite materials based on graphene and other 2D materials are of considerable interest in the fields of catalysis, electronics, and energy conversion and storage because of the unique structural features and electronic properties of each component and the synergetic effects brought about by the compositing. Approaches to the mass production of 2D materials and their composites in a facile and affordable way are urgently needed to enable their implementation in practical applications. Here a novel electrochemical exfoliation approach to prepare 2D composites is proposed, which combines simultaneous anodic exfoliation of graphite and cathodic exfoliation of other 2D materials (namely MoS2, MnO2, and graphitic carbon nitride). The synthesis is carried out in a single‐compartment electrochemical cell to in situ produce functional 2D composite materials. Applications of the as‐prepared 2D composites are demonstrated as (i) effective hydrogen evolution catalysts and (ii) supercapacitor electrode materials. The method enables the compositing of semiconductive, or even insulating, 2D materials with conductive graphene in an easy, cheap, ecofriendly, yet efficient way, liberating the intrinsic functions of 2D materials, which are usually hindered by their poor conductivity. The method is believed to be widely applicable to the family of 2D materials.  相似文献   

12.
Dynamic metabolism of photosystem II reaction center proteins and pigments   总被引:4,自引:0,他引:4  
Photosystem II (PSII) reaction center is an intrinsic membrane-protein complex in the chloroplast that catalyzes primary charge separation between P680, a chlorophyll a dimer, and the primary quinone acceptor QA. This supramolecular protein complex consists of D1, D2, α and β subunits of cytochrome b559, the psbI gene product, and a few low molecular mass proteins. Ligated to this complex are pigments: chlorophyll a, pheophytin a, β-carotenes, and non-heme iron. One of the major outcomes of light-mediated photochemistry is the fact that in the light, D1 protein is rapidly turned over compared to the other proteins of the reaction center; the relative lability of proteins being: D1?D2>Cyt b559. D1 degradation in visible light exhibits complex, multiphasic kinetics. D1 degradation can be uncoupled from photosynthetic electron transport, which suggests that degradation may perform some separate function(s) beyond maintaining photosynthetic activity. The presence of a physiologically relevant level of ultraviolet-B (UV-B) radiation in a background of photosynthetically active radiation stimulates D1/D2 heterodimer degradation in a synergistic manner. D1 undergoes several post-translational modifications including N-acetylation, phosphorylation, and palmitoylation. Light-dependent phosphorylation of D1 occurs in all flowering plants but not in the green alga Chlamydomonas or in cyanobacteria, and the same may be true for D2. The roles of these modifications in D1/D2 assembly, turnover, or function are still a matter of conjecture. Nor do we yet know about the fate of the liganded pigments, such as the chlorophyll and carotenoids bound to the reaction center proteins. Environmental extremes that negatively impact photosynthesis seem to involve D1 metabolism. Thus, D1 protein is a major factor of PSII instability, and its replacement after its degradation is a primary component of the PSII repair cycle.  相似文献   

13.
The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm?2) and areal capacity (16.4 mAh cm?2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window.  相似文献   

14.
Binding data obtained with Biacore instrumentation is often evaluated using a kinetic transport model where reaction rate constants and a mass transport coefficient are used to describe the interaction. Here the use of a simplified model, an affinity transport model, for determination of the affinity (K(D)) but not the kinetics (k(a), k(d)) has been investigated. When binding rates were highly governed by mass transport effects the two models returned the same affinity and gave similar residuals, but k(a) and k(d) values found with the kinetic transport model were unreliable. On the other hand the affinity transport model failed to describe the data when binding curves were less influenced by mass transport effects. Under such circumstances the kinetic transport model returned correct k(a) and k(d) values. Depending on the outcome of the analysis the affinity transport model can therefore be used to reduce uncertainties of the kinetic parameters or as an easy way to determine K(D) values from non-steady-state data. The use of the affinity transport model is illustrated with simulated data and with binding data obtained for the interaction between a 439 Da thrombin inhibitor and immobilized thrombin. Since it is more difficult to resolve high k(a) values for low molecular weight analytes, the affinity transport model may be particularly useful for affinity analysis involving fast reactions between such analytes and immobilized protein targets.  相似文献   

15.
Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in situ characterization of their evolution has never been achieved at the nanoscale. It is reported here with in situ imaging, combined with density functional theory of the elastic changes of a 2D titanium carbide (Ti3C2Tx) based electrode in direction normal to the basal plane (electrode surface) during alkaline cation intercalation/extraction. 2D carbides, known as MXenes, are promising new materials for supercapacitors and various kinds of batteries, and understanding the coupling between their mechanical and electrochemical properties is therefore necessary. The results show a strong correlation between the cations content and the out‐of‐plane elastic modulus. This strategy enables identifying the preferential intercalation pathways within a single particle, which is important for understanding ionic transport in these materials.  相似文献   

16.
Na3V2(PO4)3 (denoted as NVP) has been considered as a promising cathode material for room temperature sodium ion batteries. Nevertheless, NVP suffers from poor rate capability resulting from the low electronic conductivity. Here, the feasibility to approach high rate capability by designing carbon‐coated NVP nanoparticles confined into highly ordered mesoporous carbon CMK‐3 matrix (NVP@C@CMK‐3) is reported. The NVP@C@CMK‐3 is prepared by a simple nanocasting technique. The electrode exhibits superior rate capability and ultralong cyclability (78 mA h g?1 at 5 C after 2000 cycles) compared to carbon‐coated NVP and pure NVP cathode. The improved electrochemical performance is attributed to double carbon coating design that combines a variety of advantages: very short diffusion length of Na+/e? in NVP, easy access of electrolyte, and short transport path of Na+ through carbon toward the NVP nanoparticle, high conductivity transport of electrons through the 3D interconnected channels of carbon host. The optimum design of the core–shell nanostructures with double carbon coating permits fast kinetics for both transported Na+ ions and electrons, enabling high‐power performance.  相似文献   

17.
The performance of lithium and sodium‐ion batteries is partly determined by the microstructures of the active materials and anodes. Much attention has been paid to the construction of various nanostructured active materials, with emphasis on optimizing the electronic and ionic transport kinetics, and structural stability. However, less attention has been given to the functionalization of electrode microstructure to enhance performance. Therefore, it is significant to study the effect of optimized microstructures of both active materials and electrodes on the performance of batteries. In this work, porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks (MoS2/C‐MWCNT) are built as sodium‐ion battery anodes to synergistically facilitate the sodium‐ion storage process. The optimized MoS2/C‐MWCNT possesses favorable features, namely few‐layered, defect‐rich, and interlayer‐expanded MoS2 with abundant mesopores/macropores and carbon incorporation. Notably, the presence of 3D MWCNT network plays a critical role to further improve interparticle and intraparticle conductivity, sodium‐ion diffusion, and structural stability on the electrode level. As a result, the electrochemical performance of optimized MoS2/C‐MWCNT is significantly improved. This study suggests that rational design of microstructures on both active material and electrode levels simultaneously might be a useful strategy for designing high performance sodium‐ion batteries.  相似文献   

18.
The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cminKm we capture oxygen uptake using zero‐order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. Biotechnol. Bioeng. 2011; 108:1450–1461. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Chlamydomonas reinhardtii mutants D1-R323H, D1-R323D, and D1-R323L showed elevated chlorophyll fluorescence yields, which increased with decline of oxygen evolving capacity. The extra step K ascribed to the disturbance of electron transport at the donor side of PS II was observed in OJIP kinetics measured in mutants with a PEA fluorometer. Fluorescence decay kinetics were recorded and analyzed in a pseudo-wild type (pWt) and in mutants of C. reinhardtii with a Becker and Hickl single photon counting system in pico- to nanosecond time range. The kinetics curves were fitted by three exponentials. The first one (rapid, with lifetime about 300 ps) reflects energy migration from antenna complex to the reaction center (RC) of photosystem II (PS II); the second component (600–700 ps) has been assigned to an electron transfer from P680 to QA, while the third one (slow, 3 ns) assumingly originates from charge recombination in the radical pair [P680+• Pheo−•] and/or from antenna complexes energetically disconnected from RC II. Mutants showed reduced contribution of the first component, whereas the yield of the second component increased due to slowing down of the electron transport to QA. The mutant D1-R323L with completely inactive oxygen evolving complex did not reveal rapid component at all, while its kinetics was approximated by two slow components with lifetimes of about 2 and 3 ns. These may be due to two reasons: a) disconnection between antennae complexes and RC II, and b) recombination in a radical pair [P680+• Pheo−•] under restricted electron transport to QA. The data obtained suggest that disturbance of oxygen evolving function in mutants may induce an upshift of the midpoint redox potential of QA/QA couple causing limitation of electron transport at the acceptor side of PS II.  相似文献   

20.
While stretchable micro‐supercapacitors (MSCs) have been realized, they have suffered from limited areal electrochemical performance, thus greatly restricting their practical electronic application. Herein, a facile strategy of 3D printing and unidirectional freezing of a pseudoplastic nanocomposite gel composed of Ti3C2Tx MXene nanosheets, manganese dioxide nanowire, silver nanowires, and fullerene to construct intrinsically stretchable MSCs with thick and honeycomb‐like porous interdigitated electrodes is introduced. The unique architecture utilizes thick electrodes and a 3D porous conductive scaffold in conjunction with interacting material properties to achieve higher loading of active materials, larger interfacial area, and faster ion transport for significantly improved areal energy and power density. Moreover, the oriented cellular scaffold with fullerene‐induced slippage cell wall structure prompts the printed electrode to withstand large deformations without breaking or exhibiting obvious performance degradation. When imbued with a polymer gel electrolyte, the 3D‐printed MSC achieves an unprecedented areal capacitance of 216.2 mF cm?2 at a scan rate of 10 mV s?1, and remains stable when stretched up to 50% and after 1000 stretch/release cycles. This intrinsically stretchable MSC also exhibits high rate capability and outstanding areal energy density of 19.2 µWh cm?2 and power density of 58.3 mW cm?2, outperforming all reported stretchable MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号