首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since our previous study of pain somatosensory evoked potentials (SEPs) following CO2 laser stimulation of the hand dorsum could not clarify whether the early cortical component NI was generated from the primary somatosensory cortex (SI) or the secondary somatosensory cortex (SII) or both, the scalp topography of SEPs following CO2 laser stimulation of the foot dorsum was studied in 10 normal subjects and was compared with that of the hand pain SEPs and the conventional SEPs following electrical stimulation of the posterior tibial nerve recorded in 8 and 6 of the 10 subjects, respectively. Three components (N1, N2 and P2) were recorded for both foot and hand pain SEPs. N1 of the foot pain SEPs was maximal at the midline electrodes (Cz or CPz) in all data where that potential was recognized, but the potential field distribution was variable among subjects and even between two sides within the same subject. N1 of the hand pain SEPs was maximal at the contralateral central or midtemporal electrode. The scalp distribution of N2 and P2, however, was not different between the foot and hand pain SEPs. The mean peak latency of N1 following stimulation of foot and hand was found to be 191 msec and 150 msec, respectively, but there was no significant difference in the interpeak latency of Nl-N2 between foot and hand stimulation. It is therefore concluded that NI of the foot pain SEPs is generated mainly from the foot area of SI. The variable scalp distribution of the N7 component of the foot pain SEPs is likely due to an anatomical variability among subjects and even between sides.  相似文献   

2.
We recorded electrically stimulated somatosensory evoked potentials (electric SEPs) and pain-related SEPs following CO2 laser stimulation (CO2 laser SEPs) from a 17-year-old patient affected by myotonic dystrophy whose MRI disclosed a large syrinx extending from spinal level C2 to S3. Careful clinical and electromyographic examinations revealed no motor or sensory disturbances, apart from myotonia. The only abnormality noted in median and ulnar nerve short-latency electric SEPs (recorded with a non-cephalic reference electrode) was the absence of cervical component N13, the other SEP responses (N9, N10, N11, P14, N20) being normal. The cutaneous pain threshold and CO2 laser SEPs (both obtained by a CO2 laser beam applied to the back of the hand) were normal. Thus cervical component N13 appears to be highly sensitive to the effects of central cord lesions, even when these are asymptomatic.  相似文献   

3.
The neural generators of the somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve were studied in man and in rhesus monkeys. Recordings from the cuneate nucleus were compared to the far-field potentials recorded from electrodes placed on the scalp. It was found that the shape of the response from the surface of the human cuneate nucleus to stimulation of the median nerve is similar to that of the response recorded more caudally in the dorsal column, i.e., an initially small positivity followed by a negative wave that is in turn followed by a slow positive wave. The beginning of the negative wave coincides in time with the N14 peak in the SEP recorded from the scalp, and its latency is 13 msec. The response from the cuneate nucleus in the rhesus monkey has a similar shape and its negative peak appears with the same latency as the positive peak in the vertex response that has a latency of 4.5 msec; the peak negativity has a latency of about 6 msec and thus coincides with P6.2 in the vertex recording. Depth recordings from the cuneate nucleus and antidromic stimulation of the dorsal column fibers in the monkey provide evidence that the early components of the response from the surface of the cuneate nucleus are generated by the dorsal column fibers that terminate in the nucleus.The results support the hypothesis that the P14 peak in the human SEP is generated by the termination of the dorsal column fibers and that the cuneate nucleus itself contributes little to the far-field potentials.  相似文献   

4.
Direct and far-field recorded somatosensory evoked potentials (SEPs) obtained from 2 patients during neurosurgical procedures are presented. A previous report (Møller et al. 1986) has suggested that the P14 component of the SEP following median nerve stimulation is generated at the cuneate nucleus. The present data suggest that the scalp recorded P14 component (scalp-noncephalic electrode derivation) is generated rostral to the junction of the cervical cord and the medulla.  相似文献   

5.
Somatosensory evoked potentials (SEPs) in the vicinity of the dorsal column nuclei in response to electrical stimulation of the median nerve (MN) and posterior tibial nerve (PTN) were studied by analyzing the wave forms, topographical distribution, effects of higher rates of stimulation and correlation with components of the scalp-recorded SEPs. Recordings were done on 4 patients with spasmodic torticollis during neurosurgical operations for microvascular decompression of the eleventh nerve. The dorsal column SEPs to MN stimulation (MN-SEPs) were characterized by a major negative wave (N1; 13 msec in mean latency), preceded by a small positivity (P1) and followed by a large positive wave (P2). Similar wave forms (P1′-N1′-P2′) were obtained with stimulation of PTN (PTN-SEPs), with a mean latency of N1′ being 28 msec. Maximal potentials of MN-SEPs and PTN-SEPs were located in the vicinity of the ipsilateral cuneate and gracile nuclei, respectively, at a level slightly caudal to the nuclei. The latencies of P1 and N1 increased progressively at more rostral cervical cord segments and medulla, but that of P2 did not. A higher rate of stimulation (16 Hz) caused no effects on P1 and N1, while it markedly attenuated the P2 component. These findings suggest that P1 and N1 of MN-SEPs, as well as P1′ and N1′ of PTN-SEPs, are generated by the dorsal column fibers, and P2 and P2′ are possibly of postsynaptic origin in the respective dorsal column nuclei.The peak latency of N1 recorded on the cuneate nucleus was identical with the scalp-recorded far-field potential of P13–14 in all patients, while no scalp components were found which corresponded to P2. These findings support the previous assumption that the scalp-recorded P13–14 is generated by the presynaptic activities of the dorsal column fibers at their terminals in the cuneate nucleus.  相似文献   

6.
Here we investigate the functional organization of structures involved in sensory analysis in a restricted region of a cortical projection area. We have shown that stimulation of somatosensory areas I and II (SI and SII) may block an afferent volley at the level of the thalamic relay nucleus, and that SII may be selectively blocked by stimulation of SI. Also definite somatosensory connections have been demonstrated between SII, SI, and the motor cortex. We suggest that common mechanisms underlie the generation of focal reactions in projection areas of the cortex induced by stimulation of various structures. The properties of two groups of neurones from area SII are described: those having a short latency and receiving direct projections from the thalamic relay nucleus, and those of long latent period with a well-marked convergence, and reacting to stimulation of various afferent pathways. It is suggested that each path to a local point of a cortical projection areas terminates with its relay element. The signal is then directed to a common intracortical system of neurones where signals from various sources occurs (afferent, interhemispherical, subcortico-cortical, and intracortical) converge and interact. All groups of neurones are involved in the formation of the common components of evoked potentials.Presented to the All-Union Symposium: "Electrical responses of the cerebral cortex to afferent stimuli," Kiev, October, 1969.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 155–165, March–April, 1970.  相似文献   

7.

Background

A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices.

Methods

Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy.

Results

Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position.

Conclusions

Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.  相似文献   

8.
A combined anatomical and physiological strategy was used to investigate the organization of the corticocuneate pathway in the cat. The distribution of the corticocuneate projection was mapped by means of the anterograde horseradish peroxidase (HRP) labeling technique and correlated with the nuclear cytoarchitecture in Nissl and Golgi material, the distribution of retrogradely labeled relay cells after HRP injections in the ventrobasal complex of the thalamus, and the topographic organization derived from single-and multiunit recordings in the decerebrate, unanesthetized cat. This approach provided details about the arrangement of the corticocuneate pathway that were not available from previous studies with anterograde degeneration methods.

On the basis of cytoarchitectonic and connectional features, a number of subdivisions are identified in the cuneate nucleus, each of which is associated with characteristic functional properties. In agreement with previous studies, it is found that a large portion of the cuneate nucleus, the middle dorsal part (MCd), is exclusively devoted to the representation of cutaneous receptive fields on the digits. This “core” region contains more thalamic projecting neurons than any other subdivision of the cuneate nucleus. A topographic arrangement also exists in the subdivisions of the rostral cuneate and of the nuclear region ventral to MCd, although in these, receptive fields are larger and predominantly, but not exclusively, related to deep receptors and involve the arm, shoulder, and trunk.

Observations on corticocuneate projections were based on injections, mainly focused on functional subdivisions of the primary somatosensory cortex (SI) as described by McKenna et al (1981). Although cortical projections are mainly to cuneate regions other than its core, a significant proportion of fibers from the region of SI where the digits are represented (particularly area 3b) do project to the MCd region of the cuneate nucleus. Similarly, nuclear areas associated with receptive fields on the arm and trunk are labeled after injection in SI arm and trunk regions, respectively. Thus, a close topographic relationship appears to exist between the somatosensory cortex and cuneate regions related to the same body representation, although nuclear regions in which receptive fields on the neck area are represented receive very sparse or no detectable cortical projections even when the injection of the tracer involves the entire sensorimotor cortex. The topographic arrangement of SI projections upon the cuneate nucleus suggests that a similar pattern exists in both structures with regard to the relative representations of distal versus proximal and deep versus cutaneous receptive fields (e.g., “core” vs. “shell” organization), and that cuneate regions preferentially related to either of these classes of receptive fields receive direct connections from the corresponding regions in SI.

A comparison of the results from cats with tracer injections in areas 4 and 3b reveals that the projections from the former is denser than that arising from the latter and that their territories of termination largely overlap in the ventral portions of the cuneate nucleus. However, cortical projections to MCd may be derived from the somatosensory cortex with no contribution from area 4. The demonstration of the relative selectivity of cortical projections from different cytoarchitectonic and functional cortical areas to cuneate regions identified here provides a structural basis for the elucidation of the physiological and behavioral observations, particularly on cortical modulation of somatosensory transmission during movements.  相似文献   

9.
It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Direct mechanical stimulation of the diaphragm also elicited increased activity in the same VPL neurons that were activated by electrical stimulation of the phrenic nerve. Some VPL neurons responded to both phrenic afferent stimulation and shoulder probing. In rats, VPL neurons activated by inspiratory occlusion also responded to stimulation on phrenic afferents. These results demonstrate that phrenic afferents can reach the VPL thalamus under physiological conditions and support the hypothesis that the thalamic VPL nucleus functions as a relay for the conduction of proprioceptive information from the diaphragm to the contralateral somatosensory cortex.  相似文献   

10.
Scalp distributions and topographies of early cortical somatosensory evoked potentials (SEPs) to median nerve stimulation were studied in 22 patients with 5 different types of cerebral lesion due to cerebrovascular disease or tumor (thalamic, postcentral subcortical, precentral subcortical, diffuse subcortical and parieto-occipital lesions) in order to investigate the origins of frontal (P20, N24) and central-parietal SEPs (N20, P22, P23).In 2 patients with thalamic syndrome, N16 was delayed in latency and N20/P20 were not recorded. No early SEP except for N16 was recorded in 2 patients with pure hemisensory loss due to postcentral subcortical lesion. In all 11 patients with pure hemiparesis or hemiplegia due to precentral subcortical lesion N20/P20 and P22, P23/N24 components were of normal peak latencies. The amplitude of N24 was significantly decreased in all 3 patients with complete hemiplegia. These findings support the hypothesis that N20/P20 are generated as a horizontal dipole in the central sulcus (3b), whereas P23/N24 are a reflection of multiple generators in pre- and post-rolandic fissures. P22 was very localized in the central area contralateral to the stimulation.Topographical studies of early cortical SEPs are useful for detecting each component in abnormal SEPs  相似文献   

11.
Acute electrophysiological experiments on lizards (Ophisaurus apodus) showed that electrical stimulation of the anterior dorsolateral thalamic nucleus and medial forebrain bundle evokes short-latency responses in the hippocampal (mediodorsal) cortex which coincides in distribution and configuration with responses in the same cortical area to sensory stimulation. Extensive destruction of these structures inhibits, or even completely blocks, the conduction of sensory (visual, somatic, audiovibratory) and tactile impulses to the hippocampal cortex. It is concluded that the anterior dorsolateral thalamic nucleus and medial forebrain bundle constitutes, if not the only, at least the principal pathway for transmission of these sensory impulses to the hippocampal cortex in lizards.  相似文献   

12.
Previous studies have shown that the somatosensory evoked potentials (SEPs) recorded from the scalp are modified or gated during motor activity in man. Animal studies show corticospinal tract terminals in afferent relays, viz. dorsal horn of spinal cord, dorsal column nuclei and thalamus. Is the attenuation of the SEP during movement the result of gating in subcortical nuclei? This study has investigated the effect of manipulation and fractionated finger movements of the hand on the subcortically generated short latency SEPs in 9 healthy subjects. Left median nerve SEPs were recorded with electrodes optimally placed to record subcortical activity with the least degree of contamination. There was no statistically significant change in amplitude or latency of the P9, N11, N13, P14, N18 and N20 potentials during rest or voluntary movement of the fingers of the left hand or manipulation of objects placed in the hand. The shape of the N13 wave form was not modified during these 3 conditions. It is concluded that in man attenuation of cortical waves during manipulation is not due to an effect of gating in the subcortical sensory relay nuclei.  相似文献   

13.
Peroneal somatosensory evoked potentials (SEPs) were performed on 23 normal subjects and 9 selected patients with unilateral hemispheric lesions involving somatosensory pathways.Recording obtained from right and left peroneal nerve (PN) stimulations were compared in all subjects, using open and restricted frequency bandpass filters. Restricted filter (100–3000 Hz) and linked ear reference (A1–A2) enhanced the detection of short latency potentials (P1, P2, N1 with mean peak latency of 17.72, 21.07, 24.09) recorded from scalp electrodes over primary sensory cortex regions. Patients with lesions in the parietal cortex and adjacent subcortical areas demonstrated low amplitude and poorly formed short latency peroneal potentials, and absence of components beyond P3 peak with mean latency of 28.06 msec. In these patients, recordings to right and left median nerve (MN) stimulation showed absence or distorted components subsequent to N1 (N18) potential.These observations suggest that components subsequent to P3 potential in response to PN stimulation, and subsequent to N18 potential in response to MN stimulation, are generated in the parietal cortical regions.  相似文献   

14.
Median nerve somatosensory evoked potentials (SEPs) were recorded in 9 patients undergoing profound hypothermia for surgical repair of the aortic arch. In addition to the known increase in peak latencies, hypothermia gave rise to the appearance of peaks (‘P13,’ ‘N14’) inconsistently recognized at normothermia; moreover, profound hypothermia is associated with the disappearance of cortical activities around 20°, of subcortical waves at lower temperatures. The practical implications of the results are 3-fold: firstly, they suggest that the ‘P13’ and P14 should both be intracranially generated, at a pre- and postsynaptic level with respect to the cuneate nucleus, respectively; secondly, they show that some discrepancies between previous papers dealing with SEPs and hypothermia can be explained by differences in the choice of the reference; thirdly, they bring some suggestions on a better use of SEPs to monitor patients undergoing aortic arch surgery.  相似文献   

15.
Origin of the frontal somatosensory evoked potential (SEP) by median nerve stimulation was investigated in normal volunteers and in patients with localized cerebrovascular diseases, and the following results were obtained.
  • 1.(1) In normal subjects, SEPs recorded at F3 (or F4) contralateral to the stimulating median nerve were composed of P12, N15, P18.5 and N26. Similar components were recognized in SEP recorded at Fz.
  • 2.(2) In patients in whom putaminal or thalamic hemorrhages had destroyed the posterior limbs of the internal capsules, frontal N15 and parietal N18 (N20) disappeared. These components were also absent in patients with cortical (parietal) infarctions. Among these patients, the thalamus was not affected in cases with putaminal hemorrhages and cortical infarctions.
These facts indicate that the generator of the frontal N15 does not exist in the thalamus but that it originates from the neural structure central to the internal capsule, which suggests a similarity to the generator of the parietal N18.Because N15 was recorded in the midline of the frontal region with shorter latency than parietal N18, the frontal N15 might represent a response to the sensory input of the frontal lobe via the non-specific sensory system.  相似文献   

16.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

17.
Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30–50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N20-P25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P14-N20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.  相似文献   

18.
During the foreperiod of a forewarned reaction time (RT) task reflexes in the executing limb increase to a lesser extent than those in the contralateral limb. This is possibly due to input modulation. The present study investigates the possibility of cutaneous sensory modulation during motor preparation by studying the amplitudes of somatosensory evoked potentials (SEPs). Eighteen subjects performed a forewarned RT task with the same fingers as the ones which were electrically stimulated. SEPs evoked during the 4 sec preparatory period were compared to those evoked during movement execution and during the resting period after the motor response respectively. During response execution most SEP components showed smaller amplitudes, i.e., they were gated, which agrees with other studies. In the first part of the foreperiod no SEP modulation was observed. Towards the end of the foreperiod, 500 msec before the response stimulus (RS), the amplitude of the contralateral parietal N70-P100 was significantly decreased, while the P45-N70 showed a similar tendency. However, at the same time the P100-N140 was increased in amplitude. The decrease of the intermediate latency components towards the end of the foreperiod is discussed in terms of gating, while the increase in the long latency component is discussed with respect to a decrease in RT on trials where the fingers were stimulated just before the RS, pointing to the role of attentional mechanisms.  相似文献   

19.
Primuline fluorochrome retrograde transport technique was used to investigate sources of thalamocortical projections to a single rat somatosensory cortex column connected with the projection of the C3 vibrissa. Labeled cells were identified in eight different thalamic nuclei: two specific, five nonspecific, and one association nucleus. Labeled neurons differed in the degree of stain accumulated as well as cell numbers and density of distribution from one nucleus to another, indicative of the different arborization patterns of their axons within the cortex. Highest numbers of heavily stained cells as well as highest density of distribution were observed in the ventral thalamic nucleus. The convergence seen between different thalamocortical inputs on to a single somatosensory cortex column explains the functional differences observed between neurons belonging to the same column and makes the formation of functionally distinct neuronal groupings appear possible on this structural basis.Neurocybernetics Research Institute, Rostov-on-Don. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 168–174, March–April, 1989.  相似文献   

20.
为了理解啮齿类动物的脑功能连接,本文利用9.4T fMRI获得轻度麻醉状态下大鼠静息状态及刺激激活的数据,通过互相关分析构建节点之间的相关系数矩阵并计算相应的网络参数.结果发现:给予前爪电刺激时,刺激对侧初级感觉皮层(S1)、丘脑(Tha)有较强的正激活,双侧尾状壳核(CPu)有较强的负激活.静息状态时大鼠感觉/运动皮层内部、丘脑内部的连接性较强,而感觉/运动皮层与丘脑之间的连接较弱,双侧感觉运动系统之间存在较强的同步低频振荡,感觉运动系统在静息态时的脑网络具有小世界属性.结果提示,啮齿类动物在大脑信息处理中的功能分离和整合可能与人类存在某些相似性,支持哺乳动物中枢神经系统的基本功能存在遗传保守性的观点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号