首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive method for the enantioselective high-performance liquid chromatographic determination of methadone and its main metabolite, EDDP, in human urine is described. (−)-(R)-Methadone, (+)-(S)-methadone, (+)-(R)-EDDP, (−)-(S)-EDDP and imipramine as an internal standard are detected by ultraviolet detection at 200 nm. The enantiomers of methadone and EDDP were extracted from human urine by a simple liquid–liquid extraction procedure. The extracted sample was reconstructed in mobile phase and the enantiomers of methadone and EDDP were quantitatively separated by HPLC on a short analytical LiChrospher RP8 column coupled in series with a chiral AGP column. Determination of all four enantiomers was possible in the range of 0.03 to 2.5 μM. The recoveries of methadone enantiomers and EDDP enantiomers added to human urine were about 90% and 80%, respectively. The method was applicable for determination of methadone enantiomers and the enantiomers of its main metabolite in urine samples from methadone maintenance patients and patients suffering from severe chronic pain.  相似文献   

2.
(±)-Pantoprazole ((±)-PAN), (±)-5-(difluoromethoxy)-2-[[(3.4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole is a chiral sulfoxide that is used clinically as a racemic mixture. The disposition kinetics of (+)-PAN and (−)-PAN given separately has been studied in rats. Serum levels of (+)- and (−)-PAN and its metabolites, pantoprazole sulfone (PAN-SO2), pantoprazole sulfide (PAN-S), 4′-O-demethyl pantoprazole sulfone (DMPAN-SO2), and 4′-O-demethyl pantoprazole sulfide (DMPAN-S) were measured by HPLC. Following single intravenous or oral administration, both enantiomers were rapidly absorbed and metabolized, resulting in similar serum concentrations, suggesting that the two enantiomers have approximately the same disposition kinetics. The major metabolite of both (+)- and (−)-PAN was PAN-SO2, while DMPAN-SO2 was also detected as a minor metabolite. Serum levels of PAN-S and DMPAN-S could not be quantified after intravenous or oral administration of either enantiomer. Significant chiral inversion occurred after intravenous and oral administration of (+)-PAN. The AUCs of (−)-PAN after intravenous and oral dosing of (+)-PAN were 36.3 and 28.1%, respectively of those of total [(+) + (−)] PAN. In contrast, the serum levels of (+)-PAN were below quantitation limits after intravenous or oral administration of (−)-PAN. Therefore, chiral inversion was observed only after administration of (+)-PAN, supporting the hypothesis that stereoselective inversion from (+)-PAN to (−)-PAN occurs in rats. Chirality 10:747–753, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
A coupled achiral–chiral high-performance liquid chromatographic system with fluorescence detection at excitation/emission wavelengths of 276/306 nm has been developed for the determination of the enantiomers of terbutaline, (S)-(+)-terbutaline and (R)-(−)-terbutaline in urine. Urine samples were prepared by solid-phase extraction with Sep-pak silica, followed by HPLC. The terbutaline was preseparated from the interfering components in urine on Phenomenex silica column and the terbutaline enantiomers and betaxolol were resolved and determined on a Sumichiral OA-4900 chiral stationary phase. The two columns were connected by a switching valve equipped with silica precolumn. The precolumn was used to concentrate the terbutaline in the eluent from the achiral column before back flushing onto the chiral phase. For each enantiomer the assay was linear between 1 and 250 ng/ml (R2=0.9999) and the detection limit was 0.3 ng/ml. The intra-day variation was between 4.6 and 11.6% in relation to the measured concentration and the inter-day variation was 4.3–11.0%. It has been applied to the determination of (S)-(+)-terbutaline and (R)-(−)-terbutaline in urine from a healthy volunteer dosed with racemic terbutaline sulfate.  相似文献   

4.
Rat kidneys were perfused for 30 min with a Krebs-Henseleit bicarbonate buffer with 5 mM glucose. Albumin proved superior to pluronic polyols as oncotic agent with regard to carnitine reabsorption in the perfused kidney. The reabsorption of 30 μM (−)-[methyl-3H]carnitine was approx. 96% during the first 10 min. At 750 μM the reabsorption decreased to 40%. The tubular reabsorptive maximum (Tmax) was approx. 170 nmol/min per kidney. The fractional reabsorption and clearance of (+)-carnitine, γ-butyrobetaine, and carnitine esters did not deviate significantly from that of (−)-carnitine. (+)-Carnitine was not metabolized by the perfused kidney. In perfusions with (−)-carnitine or (−)-carnitine plus 10 mM α-ketoisocaproate or α-ketoisovalerate increased amounts of acetylcarnitine, isovalerylcarnitine and isobutyrylcarnitine were found. Propionate (5 mM) inhibited acetylcarnitine formation. Isovalerylcarnitine, isobutyrylcarnitine and propionylcarnitine were actively degraded to free (−)-carnitine. In urine, we found a disproportionally high excretion of carnitine or carnitine esters formed in the kidney, compared to the same derivatives when ultrafiltrated. Leakage of metabolites formed in the kidney into preurine may explain this phenomenon.  相似文献   

5.
Fast and reproducible Capillary Zone Electrophoresis (CZE) method for the quantification of (+)-S clopidogrel carboxylic acid metabolite in human fluids was elaborated for the first time. Optimal buffer and CZE conditions were established to obtain the complete separation of clopidogrel, its metabolite and piroxicam (internal standard), during one analytical run. Finally, resolution of the analytes was obtained in an uncoated silica capillary filled with a phosphate buffer of pH 2.5. The analytes were isolated from plasma and urine samples using solid phase extraction (SPE). Validation of the CZE method was carried out. The calibration curve of clopidogrel was linear in the range of 0.5–10.0 mg/L in plasma and urine, whereas for (+)-S carboxylic acid metabolite linearity was confirmed in the range of 0.25–20.0 mg/L in plasma and 0.25–10.0 mg/L in urine. Intra- and inter-day precision and accuracy were repeatable. LOD and LOQ were also estimated. SPE recovery of the analytes from plasma and urine was comparable and greater than 80%. The validated method was successfully applied in pharmacokinetic investigations of (+)-S carboxylic acid metabolite of clopidogrel following the oral administration of clopidogrel to patients prior to percutaneous coronary intervention.  相似文献   

6.
A simple and sensitive high-performance liquid chromatograhic (HPLC) method for the determination of (+)-(S)-sotalol and (−)-(R)-sotalol in biological fluids was established. Following extraction with isopropyl alcohol from biological samples on a Sep-Pak C18 cartridge, the eluent was derivatized with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosol isothiocyanate (GITC). The diastereoisomeric derivatives are resolved by HPLC with UV detection at 225 nm. Calibration was linear from 0.022 to 4.41 μg/ml in human plasma and from 0.22 to 88.2 μg/ml in human urine for both (+)-(S)- and (−)-(R)-sotalol. The lower limit of determination was 0.022 μg/ml for plasma and 0.22 μg/ml for urine. The within-day and day-to-day coefficients of variation were less than 7.5% for each enantiomer at 0.09 and 1.8 μg/ml in plasma and at 0.44 and 4.4 μg/ml in urine. The method is also applicable to other biological specimens such as rat, mouse and rabbit plasma.  相似文献   

7.
The present study was an attempt to elucidate the relationship between stereoselective pharmacokinetics and protein binding of KE-298 and its active metabolites, deacetyl-KE-298 (M-1) and S-methyl-KE-298 (M-2). Metabolic chiral inversion was also investigated. The levels of unchanged KE-298 in plasma after oral administration of (+)-(S)-KE-298 to rats were lower than those of (−)-(R)-KE-298, whereas the levels of M-1 and M-2 after administration of (+)-(S)-KE-298 were higher than after (−)-(R)-KE-298. In vitro, rat plasma protein binding of (+)-(S)-KE-298 was lower than that of (−)-(R)-KE-298. In contrast, the binding of (+)-(S)-M-1 and (+)-(S)-M-2 was higher than that of (−)-(R)-M-1 and (−)-(R)-M-2. Displacement studies revealed that the (+)-(S) and (−)-(R)-enantiomers of KE-298 and their metabolites bound to the warfarin binding site on rat serum albumin. These results suggest that the stereoselective plasma levels in KE-298 and its metabolites were closely related to enantiomeric differences in protein binding, attributed to quantitative differences in binding to albumin rather than to the different binding sites. Unidirectional chiral inversion was detected after oral administration of either (−)-(R)-KE-298 or (−)-(R)-M-2 to rats both yielding (+)-(S)-M-2. Chirality 9:22–28, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

8.
《Phytochemistry》1986,25(7):1603-1606
Foliar application of Phosfon D at 50–100 ppm stimulates the growth of Salvia officinalis (sage) and moderately retards the growth of Mentha piperita (peppermint), while increasing the essential oil yield of both species by 50–70 % Phosfon D increases the proportions of (−)-3-isothujone and (+)-3-thujone in sage oil and decreases the level of (−)-β-pinene and (+)-camphor, whereas this growth retardant increases the proportions of (+)-isomenthone and (+)-neoisomenthol in peppermint oil and decreases the level of(−)-menthone and (−)-menthoL Foliar application of Cycocel at 250–500 ppm slightly stimulates growth and essential oil formation in peppermint, and retards growth of sage with little effect on oil yield. The influence of Cycocel on sage oil composition was the opposite of that of Phosfon, with a tendency to increase the level of (−)-β-pinene and decrease the level of (−)-3-isothujone under severe stunting. The effect of Cycocel on the composition of peppermint varied with concentration. The influence of growth retardants on essential oil composition and yield are most readily explained by alterations in the levels or activities of the relevant enzymes.  相似文献   

9.
The steady-state pharmacokinetics in serum and urine of the enantiomers of citalopram and its metabolites, demethylcitalopram (DCT) and didemethylcitalopram (DDCT), were investigated after multiple doses of rac-citalopram for 21 consecutive days (40 mg per day) to healthy human subjects who were extensive metabolisers of sparteine and mephenytoin. Comparable pharmacokinetic variability was noted for (+)-(S)-, (−)-(R)- and rac-citalopram. Enantiomeric (S/R) serum concentration ratios for citalopram were always less than unity and were constant during the steady-state dosing interval. A modest, but statistically significant, stereoselectivity in the disposition of citalopram and its two main metabolites was observed. Serum levels of the (+)-(S)-enantiomers of citalopram, DCT, and DDCT throughout the steady-state dosing interval investigated were 37 ± 6%, 42 ± 3% and 32 ± 3%, respectively, of their total racemic serum concentrations. The (+)-(S)-enantiomers of citalopram, DCT, and DDCT were eliminated faster than their antipodes. For (−)-(R)- and (+)-(S)-citalopram, respectively, the serum t½ averaged 47 ± 11 and 35 ± 4 h and AUCss averaged 4,193 ± 1,118 h · nmol/l and 2,562 ± 1,190 h · nmol/l. The observed enantiospecificities were apparently more related to clearance, rather than to distributional mechanisms. Chirality 9:686–692, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Enantioselective separations on chiral stationary phases with or without derivatization were developed and compared for the HPLC analysis of (+)-(R)- and (-)-(S)-metoprolol acidic metabolite in human plasma and urine. The enantiomers were analysed in plasma and urine without derivatization on a Chiralcel OD-R column, and in urine after derivatization using methanol in acidic medium on a Chiralcel OD-H column. The quantitation limits were 17 ng of each enantiomer/ml plasma and 0.5 microgram of each enantiomer/ml urine using both methods. The confident limits show that the methods are compatible with pharmacokinetic investigations of the enantioselective metabolism of metoprolol. The methods were employed in a metabolism study of racemic metoprolol administered to a patient phenotyped as an extensive metabolizer of debrisoquine. The enantiomeric ratio (+)-(R)/(-)-(S)-acid metabolite was 1.1 for plasma and 1.2 for urine. Clearances were 0.41 and 0.25 l/h/kg, respectively, for the (+)-(R)- and (-)-(S)-enantiomers. The correlation coefficients between the urine concentrations of the acid metabolite enantiomers obtained by the two methods were >0.99. The two methods demonstrated interchangeable application to pharmacokinetics.  相似文献   

11.
A capillary electrophoresis (CE) method for the quantification of R-(−)- and S-(+)-prilocaine in human serum was developed and validated. Stereoselective resolution was accomplished using 15 mM heptakis(2,6-di-methyl)-β-cyclodextrin and 0.03 mM hexadecyltrimethylammonium bromide (HTAB) contained in 100 mM phosphate buffer, pH 2.5. Solid-phase extraction was used as a sample preparation technique to remove endogenous interferences. A 72-cm uncoated fused-silica capillary at a voltage of 25 kV and 30°C was used for the analysis. The detection limits for R-(−)- and S-(+)-prilocaine were 38 ng/ml using 1 ml of human serum and the limits of quantitation were 45 ng/ml. The calibration curve was linear over the range of 45–750 ng/ml with procainamide as the internal standard. Precision and accuracy of the method were 2.86–8.50% and 3.29–7.40%, respectively, for R-(−)-prilocaine, and 3.94–9.17% and 2.0–6.73%, respectively, for S-(+)-prilocaine. The CE method was compared to an existing chiral HPLC method in terms of sensitivity and selectivity for the routine analysis of the drug.  相似文献   

12.
The configurational stability of (+)- and (−)-diethylpropion [(+)- and (−)-2-(diethyl)-1-phenyl-1-propanone or (+)- and (−)-DEP ] was investigated systematically from chemical, pharmaceutical, and pharmacological aspects. The enantiomeric ratio was monitored directly with a recently developed stability-indicating enantioselective HPLC method. In aqueous solutions, the rate of racemization increased non-linearly with increasing pH and with increasing phosphate buffer concentration. The racemization rate showed a positive slope with increasing temperature and decreasing ionic strength. The racemization rates of (+)- and (−)-DEP in the presence of cyclodextrins (CDs) did not differ significantly. CDs that were added to (+)- and (−)-DEP in a molar ratio 5:1 showed the following effects after dissolution in 10 mM phosphate buffer (final pH 6.7): sulfobutyl ether-β-CD (SBE-β-CD) and methylated-β-CD (Me-β-CD) retarded racemization; whereas hydroxypropyl-β-CD (HP-β-CD), acetyl-γ-CD (Ac-γ-CD), acetyl-β-CD (Ac-β-CD), γ-CD, and β-CD showed a weak destabilising effect. In contrast to the described CDs, α-CD distinctly accelerated the rate of racemization. The configurational stability of (+)- and (−)-DEP was also studied under physiological conditions. The half-life of racemization in heparinised human plasma was for both enantiomers determined to be approximately 23–25 min. In phosphate buffer (10 mM, pH 7.4), rac-DEP showed a high, but unselective affinity towards human α1-acid glycoprotein (orosomucoid) immobilised on silica (Chiral AGP). The rate of racemization of the free base of (−)-DEP dissolved in organic solutions generally increases with the polarity of the solvating agent. Chirality 10:307–315, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Gastric cancer (GC) is a lethal disease, and among its variety of etiological factors, Helicobacter pylori (H. pylori) infection is the strongest risk factor. However, the genetic and molecular mechanisms underlying H. pylori-related GC need further elucidation. We investigated the competing endogenous RNA (ceRNA) network differences between H. pylori (+) and H. pylori (−) GC. The long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression data from 32 adjacent noncancerous samples and 18 H. pylori (+) and 141 H. pylori (−) stomach adenocarcinoma samples were downloaded from the TCGA database. After construction of lncRNA–miRNA–mRNA ceRNA networks of H. pylori (+) and H. pylori (−) GC, Panther and Kobas databases were used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, survival analysis was used to discover the key genes. In H. pylori (+) GC, we identified a total of 1,419 lncRNAs, 82 miRNAs, and 2,501 mRNAs with differentially expressed profiles. In H. pylori (−) GC, 2,225 lncRNAs, 130 miRNAs, and 3,146 mRNAs were differentially expressed. Furthermore, three unique pathways (cytokine–cytokine receptor interaction, HIF-1 signaling pathway, and Wnt signaling pathway) were enriched in H. pylori (+) GC. According to the overall survival analysis, three lncRNAs (AP002478.1, LINC00111, and LINC00313) and two mRNAs (MYB and COL1A1) functioned as prognostic biomarkers for patients with H. pylori (+) GC. In conclusion, our study has identified the differences in ceRNA regulatory networks between H. pylori (+) and H. pylori (−) GC and provides a rich candidate reservoir for future studies.  相似文献   

14.
An improved, more efficient method for the determination of metoprolol and its two metabolites in human urine is reported. The simultaneous analysis of the zwitterionic metoprolol acidic metabolite (III, H117/04) with the basic metabolites α-hydroxymetoprolol (II, H119/66), metoprolol (I) and guanoxan (IV, internal standard) was achieved employing solid-phase extraction and isocratic reversed-phase HPLC. The analytes were extracted from urine (100 μl) using C18 solid-phase extraction cartridges (100 mg), and eluted with aqueous acetic acid (0.1%, v/v)–methanol mixture (40:60, v/v, 1.2 ml). The eluents were concentrated (250 μl) under vacuum, and aliquots (100 μl) were analysed by HPLC with fluorescence detection at 229 nm (excitation) and 309 nm (emission) using simple isocratic reversed-phase HPLC (Novapak C18 radial compression cartridge, 4 μm, 100×5 mm I.D.). Acetonitrile–methanol–TEA/phosphate buffer pH 3.0 (9:1:90, v/v) was employed as the eluent (1.4 ml/min). All components were fully resolved within 18 min, and the calibration curves for the individual analytes were linear (r2≥0.996) within the concentration range of 0.25–40.0 mg/ml. Recoveries for all four analytes were greater than 76% (n=4). The assay method was validated with intra-day and inter-day variations less than 2.5%.  相似文献   

15.
(−)-β-d-2,6-Diaminopurine dioxolane (DAPD) and its metabolite dioxolane guanosine (DXG) have potent activity against hepatitis B virus and HIV, in vitro. A reversed-phase HPLC analytical method using UV and on-line radiochemical detection for the determination of DAPD and DXG in monkey serum and urine is described in this report. Retention times for DXG, DAPD and internal standard (2′,3′-didehydro-2′ deoxythymidine, D4T) were 5.0, 6.0 and 13.0 min, respectively. The extraction recovery was greater than 97% for DAPD and 94% for DXG. The limit of quantitation for UV detection was 100 ng/ml and 125 ng/ml for DXG and DAPD in monkey serum. The standard curves were linear from 0.1 μg/ml to 5 μg/ml for DXG and 0.125 μg/ml to 5 μg/ml for DAPD. For radiochemical detection, calibration curves of standard solutions of DAPD and DXG were linear in the range of 3500 Bq to 32 000 Bq and 7500 Bq to 60 000 Bq. The intra- and inter-day relative standard deviations were less than 7.2% using UV and less than 8.6% using on-line radiochemical detection. The HPLC method was applied to serum and urine samples collected from a male rhesus monkey that was administered 33.3 mg/kg DAPD with 200 μgCi of [3H]DAPD intravenously.  相似文献   

16.
The stereoselective metabolism of the enantiomers of fenoxaprop‐ethyl (FE) and its primary chiral metabolite fenoxaprop (FA) in rabbits in vivo and in vitro was studied based on a validated chiral high‐performance liquid chromatography method. The information of in vivo metabolism was obtained by intravenous administration of racemic FE, racemic FA, and optically pure (−)‐(S)‐FE and (+)‐(R)‐FE separately. The results showed that FE degraded very fast to the metabolite FA, which was then metabolized in a stereoselective way in vivo: (−)‐(S)‐FA degraded faster in plasma, heart, lung, liver, kidney, and bile than its antipode. Moreover, a conversion of (−)‐(S)‐FA to (+)‐(R)‐FA in plasma was found after injection of optically pure (−)‐(S)‐ and (+)‐(R)‐FE separately. Either enantiomers were not detected in brain, spleen, muscle, and fat. Plasma concentration–time curves were best described by an open three‐compartment model, and the toxicokinetic parameters of the two enantiomers were significantly different. Different metabolism behaviors were observed in the degradations of FE and FA in the plasma and liver microsomes in vitro, which were helpful for understanding the stereoselective mechanism. This work suggested the stereoselective behaviors of chiral pollutants, and their chiral metabolites in environment should be taken into account for an accurate risk assessment. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Enantiomers of salbutamol were directly separated (Rs=1.16) and quantitated at therapeutic concentrations after solid-phase extraction from human plasma and urine by normal-phase high-performance liquid chromatography on a chiral column with fluorescence detection. The assay was linear for each enantiomer between 1.25 and 500 ng ml−1 and had a minimum limit of detection of 250 pg ml−1. A 3-ml plasma or 1-ml urine sample was required for quantitation at therapeutic doses. Inter-day variation was 50% for S-(+)- and 6.5% for R-(−)-salbutamol. The assay was used to compare enantioselective disposition after single doses of racemate by the intravenous, oral and rectal routes.  相似文献   

18.
A high-performance capillary electrophoresis (HPCE) assay method for the quantitation of S-(+)- and R-(−)-ondansetron in human serum was developed. Resolution was achieved using 15 mM heptakis-(2, 6-di-O-methyl)-β-cyclodextrin (DM-β-CD) in 100 mM phosphate buffer (pH 2.5). A 72-cm untreated fused-silica capillary, at a constant voltage of 20 kv, was used for the analysis. A 0.03-mM cationic detergent was used as a buffer additive to decrease the adsorption of endogenous substances onto the silica wall. The analytes of interest were isolated from endogenous substances using a solid-phase extraction procedure. The cyanopropyl cartridge gave good recoveries in excess of 85% for both S-(+)- and R-(−)-ondansetron, without any interferences. To decrease the limits of detection of the analytes, an on-capillary sample concentration technique was employed. The detection limit was 10 ng/ml using 2 ml of serum and the limit of quantitation was 15 ng/ml. The calibration curve was linear over a range of 15–250 ng/ml, with procainamide as the internal standard, and the coefficients of determination obtained were greater than 0.999 (n=3). Precision and accuracy of the method were 2.76–5.80 and 2.10–5.00%, respectively, for S-(+)-ondansetron, and 3.10–6.57 and 2.50–4.35%, respectively, for R-(−)-ondansetron. The HPCE method is a useful alternative to existing chiral high-performance liquid chromatographic methods.  相似文献   

19.
We examined the effects of dynamic one-legged knee extension exercise on mean blood velocity (MBV) and muscle interstitial metabolite concentrations in healthy young subjects (n = 7). Femoral MBV (Doppler), mean arterial pressure (MAP) and muscle interstitial metabolite (adenosine, lactate, phosphate, K(+), pH, and H(+); by microdialysis) concentrations were measured during 5 min of exercise at 30 and 60% of maximal work capacity (W(max)). MAP increased (P < 0.05) to a similar extent during the two exercise bouts, whereas the increase in MBV was greater (P < 0.05) during exercise at 60% (77.00 +/- 6.77 cm/s) compared with 30% W(max) (43.71 +/- 3.71 cm/s). The increase in interstitial adenosine from rest to exercise was greater (P < 0.05) during the 60% (0.80 +/- 0.10 microM) compared with the 30% W(max) bout (0.57 +/- 0.10 microM). During exercise at 60% W(max), interstitial K(+) rose at a greater rate than during exercise at 30% W(max) (P < 0.05). However, pH increased (H(+) decreased) at similar rates for the two exercise intensities. During exercise, interstitial lactate and phosphate increased (P < 0.05) with no difference observed between the two intensities. After 5 min of recovery, MBV decreased to baseline levels after exercise at 30% W(max) (4.12 +/- 1.10 cm/s), whereas MBV remained above baseline levels after exercise at 60% W(max) (Delta19.46 +/- 2.61 cm/s; P < 0.05). MAP and interstitial adenosine, K(+), pH, and H(+) returned toward baseline levels. However, interstitial lactate and phosphate continued to increase during the recovery period. Thus an increase in exercise intensity resulted in concomitant changes in MBV and muscle interstitial adenosine and K(+), whereas similar changes were not observed for MAP or muscle interstitial pH, lactate, or phosphate. These data suggest that K(+) and/or adenosine may play an active role in the regulation of skeletal muscle blood flow during exercise.  相似文献   

20.
(+)-(R)- and (−)-(S)-salsolinol, dopamine-derived tetrahydroisoquinolines, were tested as substrates of pig brain soluble and membrane-bound catechol-O-methyltransferase (COMT) and as inhibitors of O-methylation of dopamine by soluble COMT in vitro. Methylation products were separated by high-performance liquid chromatography with electrochemical detection. Quantification of the products showed that O-methylation of (+)-(R)-salsolinol by soluble COMT afforded the 7-O-methylated product salsoline preferentially, whereas (−)-(S)-salsolinol yielded almost equivalent amounts of the 6- and 7-methyl ethers. Unlike O-methylation by soluble COMT, 7-O/6-O-methylation ratio produced by membrane-bound COMT varied with (+)-(R)-salsolinol concentration. As to the O-methylation of dopamine by soluble COMT, comparable competitive inhibition was observed with both (+)-(R)- and (−)-(S)-salsolinol. Chirality 9:367–372, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号