首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nδ-Acetylornithine and S-methylcysteine have been identified as minor components of deproteinized blood plasma of human and bovine blood. Human blood plasma contains a variable amount of acetylornithine, averaging 1.1 ± 0.4 μmol/l (range 0.8–0.2 μmol/l). Urine contains a very small amount of acetylornithine, approximately 1 nmol/mg creatinine (1 μmol/day). Human blood plasma contains 3.9 ± 1.9 μmol/l (range 1.4–6.5 μmol/l) of S-methylcysteine. Urine contains approximately 5 nmol/mg creatinine; after acid hydrolysis the amount is increased to 20 nmol/mg creatinine.  相似文献   

2.
A sensitive and specific method for the determination of trans,trans-muconic acid (t,t-MA) in urine is described. After clean-up on an anion-exchange cartridge, t,t-MA was derivatized with BF3-methanol to the dimethyl ester and analyzed by gas chromatography-mass spectrometry (GC-MS), with 2-bromohexanoic acid as an internal standard. The limit of detection was 0.01 mg/l, the coefficient of variation for duplicate analysis in a series of urine samples (n = 50) was 2.6% and the recovery rate ranged from 93.3 to 106.3%. The between-day and within-day precision for the analysis were 7.4 and 14.6%, respectively. The method was applied to the determination of t,t-MA in urine samples from smokers and non-smokers. The mean concentration of t,t-MA in urine of 10 smokers was 0.09 ± 0.04 mg/g creatinine and was significantly (p = 0.012) higher than that found in urine of 10 non-smokers (0.05 ± 0.02 mg/g creatinine). In contrast to the results obtained with the commonly used high-performance liquid chromatographic ultraviolet detection (HPLC-UV) methods, no interference between t,t-MA and other urinary compounds was found. This GC-MS method is both specific and sensitive for biomonitoring of low environmental benzene exposure.  相似文献   

3.
It is known that n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid and eicosapentaenoic acid, are rapidly oxidized in vitro. N?-(propanoyl)lysine (propionyllysine, or PRL) is formed from the reaction of the oxidized products of n-3 PUFAs and lysine. To evaluate the oxidized n-3 PUFA-derived protein modifications in vivo, we have developed detection methods using a novel monoclonal antibody against PRL as well as liquid chromatography–mass spectrometry (LC/MS/MS). The antibody obtained specifically recognized PRL. A strong positive staining in atherosclerotic lesions of hypercholesterolemic rabbits was observed. We have also simultaneously identified and quantified both urinary PRL and urinary N?-(hexanoyl)lysine, using LC/MS/MS using isotope dilution methods. The level of urinary PRL (21.6 ± 10.6 μmol/mol of creatinine) significantly correlated with the other oxidative stress markers, 8-oxo-deoxyguanosine, dityrosine, and isoprostanes. The increase in the excretion of amide adducts into the urine of diabetic patients was also confirmed compared to healthy subjects. These results suggest that PRL may be good marker for n-3 PUFA-derived oxidative stress in vivo.  相似文献   

4.
This study reports a sensitive analytical method suitable for the quantitative analysis of ethylenethiourea (ETU) in human urine and its application to samples from the general population. Sample preparation involved the use of diatomaceous earth extraction columns to remove matrix interferences. Quantification was achieved by liquid chromatography–mass spectrometry using positive ion atmospheric pressure chemical ionisation. Within-day and between-day variability of 14% (n = 10) and 11% (n = 6), respectively, were obtained at 98 nmol/l (10 μg l−1). The assay was linear over the investigated range 2.5–245 nmol/l, with a limit of detection of 2.5 nmol/l. The method was applied to monitoring background levels of ETU in urine samples from the general population in the UK. Results obtained from 361 spot samples contained ETU levels ranging from less than the detection limit (54% of samples) to a maximum of 15.8 μmol/mol creatinine (14.3 μg/g creatinine). The 95th percentile was 5.7 μmol/mol creatinine (5.2 μg/g creatinine).  相似文献   

5.
A sensitive and reliable radioimmunoassay (RIA) for human macrophage colony-stimulating factor (M-CSF) was developed using recombinant human M-CSF (rhM-CSF) as tracer and immunogen. The assay was quantitative over the range of 50 pg/ml and 5.0 ng/ml for M-CSF in human urine and serum, and more sensitive and specific than the murine bone marrow assay. The average level of human M-CSF in urine from normal males (N = 71) and females (N = 46) was 3.94 ± 1.78 ng/ml (2.85 ± 1.15 μg/g creatinine), and 3.53 ± 1.70ng/ml (3.31 ± 1.12 μg/g creatinine), respectively. The serum levels were 1.95 ± 0.38ng/ml for males (N = 117), and 1.93 ± 0.49 ng/ml for females, (N = 16). The results with the urine and sera showed that there was no difference in the M-CSF levels due to age or gender.  相似文献   

6.
l-Homoarginine (hArg) has recently emerged as a novel cardiovascular risk factor and to herald a poor prognosis in heart failure patients. Here, we report on the development and thorough validation of gas chromatography–mass spectrometry (GC–MS) and gas chromatography–tandem mass spectrometry (GC–MS/MS) methods for the quantitative determination of hArg in biological samples, including human plasma, urine and sputum. For plasma and serum samples, ultrafiltrate (10 µL; cutoff, 10 kDa) was used. For urine samples, native urine (10 µL) was used. For sputum, protein precipitation by acetone was performed. hArg is derivatized to its methyl ester tri(N-pentafluoropropionyl) derivative; de novo synthesized trideutero-methyl ester hArg is used as the internal standard (IS). Alternatively, [guanidino-15N2]-arginine can be used as an IS. Quantitative analyses were performed after electron-capture negative-ion chemical ionization by selected-ion monitoring in GC–MS and selected-reaction monitoring in GC–MS/MS. We obtained very similar hArg concentrations by GC–MS and GC–MS/MS, suggesting that GC–MS suffices for accurate and precise quantification of hArg in biological samples. In plasma and serum samples of the same subjects very close hArg concentrations were measured. The plasma-to-serum hArg concentration ratio was determined to be 1.12 ± 0.21 (RSD, 19 %), suggesting that blood anticoagulation is not a major preanalytical concern in hArg analysis. In healthy subjects, the creatinine-corrected urinary excretion of hArg varies considerably (0.18 ± 0.22 µmol/mmol, mean ± SD, n = 19) unlike asymmetric dimethylarginine (ADMA, 2.89 ± 0.89 µmol/mmol). In urine, hArg correlated with ADMA (r = 0.475, P = 0.040); in average, subjects excreted in the urine about 17.5 times more ADMA than hArg. In plasma of healthy humans, the concentration of hArg is of the order of 2 µM. hArg may be a low-abundance constituent of human plasma proteins. The GC–MS and GC-MS/MS methods we report in this article are useful to study the physiology and pathology of hArg in experimental and clinical settings.  相似文献   

7.
The green pigment in the plasma of the scincid lizard genus Prasinohaema is identified as the bile pigment biliverdin. Concentrations of biliverdin in the plasma of P. flavipes, P. prehensicauda and P. virens are 714 ± 79 μmol/1 (mean ± one standard deviation), 1020 ± 624 μmol/1 and 819 ± 89 μmol/1, respectively. These values represent the highest concentration of plasma biliverdin measured for any organism and are the first report of non-pathological biliverdin accumulation in amniotes. We review the literature for fish species with high concentrations of plasma biliverdin and pathological biliverdin accumulation in humans; we find that Prasinohaema species have plasma biliverdin concentrations approximately 1.5–30 times greater than fish species with green blood plasma and 40 times greater than humans with green jaundice.  相似文献   

8.
This study was performed with the aim of investigating the concentration of zinc and copper in the blood of healthy alpacas (Vicugna pacos) kept in central Europe and to compare the concentration of Zn and Cu in plasma and in whole blood. A further objective was to evaluate blood Zn and Cu in relation to different micromineral supplementation, age and sex groups of alpacas. A total of 299 alpacas (224 adults and 75 crias) from 18 farms were included in this study. The concentrations of copper and zinc in plasma/whole blood were measured by flame atomic absorption spectrometry. The results of this study show high individual variability in plasma Zn (median 3.54, range 1.56–8.01 μmol/l), whole blood Zn (median 10.01, range 6.23–75.0 μmol/l), plasma Cu (median 7.53, range 2.93–16.41 μmol/l) and whole blood Cu (median 6.33, range 3.02–13.95 μmol/l). Plasma Zn was not significantly influenced by sex, age or feeding group. Whole blood Zn was only significantly higher in females than in males. The intake of Zn in all groups was equal to or higher than the nutritional recommendation. During excessive supplementation, Zn absorption decreased and thus blood Zn did not reflect the higher intake. Only a weak correlation was found (Spearman correlation coefficient r = 0.384; p > 0.01; n = 204) between plasma and whole blood Zn concentrations. Plasma copper concentration was significantly influenced by age, sex and feeding; whole blood Cu by age and feeding. However, neither plasma Cu nor whole blood Cu reflected the intake of the element. We found a close correlation between plasma and blood copper concentrations (Spearman correlation coefficient r = 0.9043; p ≤ 0.01; n = 99). According to our results, copper in plasma or blood is not a good indicator of copper intake.  相似文献   

9.
The effects of fasting and refeeding on amino acid transport in the perfused rat exocrine pancreas were investigated using a rapid dual tracer dilution technique. Unidirectional amino acid influx (15 s) was quantified (relative to the extracellular tracer d-mannitol) over a wide range of perfusate concentrations in pancreata isolated frm fed and 24 h, 48 h, and 72 h fasted and 72 h fasted and refed (24 h) animals. In fed animals transport of phenylalamine (1–24 mM) and l-serine (1–50 mM) was saturable and weighted non-linear regression analyses of the overall transport indicated an apparent Kt=10±3mM and Vmax=7.0±1.0 μmol/min per g (n = 7) for phenylalanine and Kt=16±3 mM and Vmax=20.6±2.1 μmol/min per g (n = 5) for serine. Fasting animals for 24 h or 48 h did not change the kinetics of either phenylalanine or serine transport. After a 72 h fast the rate of phenylalanine transport (Vmax=15.9±2.9 μmol/min per g, (n = 5) was enhanced whereas the transport affinity (Kt=11±3 mM) remained unaltered. l-Serine transport was essentially unaltered. When 72 h fasted animals were refed for 24 h the Vmax for the phenylalanine transport was reduced to values observed in fed animals. In parallel experiments refeeding had no significant effect on serine transport. Perfusion of pancreata isolated from 72 h fasted animals with bovine insulin (1 mU/ml or 1 μU/ml) did not stimulate either phenylalanine or serine transport. The fasting-induced stimulation of transport may provide a mechanism by which the extracellular supply of essential amino acids as phenylalanine is increased to meet the demands of continued proteolytic and lipolytic enzyme synthesis.  相似文献   

10.
Objective: It has been hypothesized that excessive fatty acid availability contributes to steatosis and the metabolic abnormalities associated with nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to evaluate whether adipose tissue lipolytic activity and the rate of fatty acid release into plasma are increased in obese adolescents with NAFLD. Methods: Palmitate kinetics were determined in obese adolescents with normal (n = 9; BMI = 37 ± 2 kg/m2; intrahepatic triglyceride (IHTG) ≤5.5% of liver volume) and increased (n = 9; BMI = 36 ± 2 kg/m2; IHTG ≥ 10% of liver volume) IHTG content during the basal state (postabsorptive condition) and during physiological hyperinsulinemia (postprandial condition). Both groups were matched on body weight, BMI, percent body fat, age, sex, and Tanner stage. The hyperinsulinemic‐euglycemic clamp procedure, in conjunction with a deuterated palmitate tracer infusion, was used to determine free‐fatty acid (FFA) kinetics, and magnetic resonance spectroscopy was used to determine IHTG content. Results: The rate of whole‐body palmitate release into plasma was greater in subjects with NAFLD than those with normal IHTG content during basal conditions, (87 ± 7 vs. 127 ± 13 µmol/min; P < 0.01) and during physiological hyperinsulinemia, (24 ± 2 vs. 44 ± 8 µmol/min; P < 0.01). Discussion: These results demonstrate that adipose tissue lipolytic activity is increased in obese adolescents with NAFLD and results in an increase in the rate of fatty acid release into plasma throughout the day. This continual excess in fatty acid flux supports the hypothesis that adipose insulin resistance is involved in the pathogenesis of steatosis and contributes to the metabolic complications associated with NAFLD.  相似文献   

11.
Amyloid beta (Aβ) is the main component of the amyloid plaques that accumulate in the brains of Alzheimer patients. The present study was conducted to investigate whether the combined treatment with selenium (Se) and zinc (Zn) offers more beneficial effects than that provided by either of them alone in reversing Aβ25–35-induced neurotoxicity in PC12 cells. Cells were pretreated with 0.1 μmol/L of Se and Zn for 4 h, after treated with 10 mmol/L Aβ25–35 for 24 h. Cells were divided into control and five treated groups, and received either 10 mmol/L Aβ25–35,10 mmol/L Aβ25–35 + 0.1 μmol/L Se, 10 mmol/L Aβ25–35 + 0.1 μmol/L Zn, 10 mmol/LAβ25–35 + 0.1 μmol/L Se + 0.1 μmol/L Zn, or 0.1 μmol/L Se + 0.1 μmol/L Zn. The result showed that cell viability was decreased in MTT metabolic rate; LDH release and MDA, H2O2, and NO levels were increased and the GSK-3β and phosphorylated tau protein level were increased in Aβ25–35-treated group (P < 0.05 or P < 0.01), which whole changes were attenuated by Se and Zn and Se combined Zn. In order to evaluate whether the Se and Zn have an effect on processing pathway of amyloid precursor protein (APP), we examined the activity of γ-secretase in primary cultured cortical neuron cells. ELISA analysis showed that Se and Zn could inhibit the activity of γ-secretase. Then we also investigated the effect of Se and Zn on the Aβ1–40 concentration and APP-N-terminal fragment expression from APP695 stably transfected Chinese hamster ovary (CHO) cells. APP695 stably transfected CHO cells were treated with 0.1 μmol/L Se and Zn; cells were divided into control and four treated groups, which received either 0.5 M DAPT, 0.1 μmol/L Se, 0.1 μmol/L Zn, or 0.1 μmol/L Se + 0.1 μmol/L Zn. Se and Zn could decrease Aβ1–40 production and increase the APP-N-terminal fragment protein expression. These experiments indicate that Se and Zn have a protective effect on AD pathology that a possible mechanism is inhibiting the activity of γ-secretase to decreasing Aβ1–40 production further influencing the APP processing. Altogether, our findings may provide a novel therapeutic target to treat AD sufferers.  相似文献   

12.
In order to obtain reference values from normal babies, Cr status of full-term newborns has been studied. Plasma and urine values were (mean±SEM) 0.7±0.1 μg/L and 0.9±0.3 μg/L, respectively, for the first month of life (n=19), and 0.6±0.1 μg/L and 0.8±0.2 μg/L for the second-to-third-month period (n=31). Premature newborns (gestational age 28–36 wk) were compared to these control values; concentrations were 0.9±0.1 μg/L and 1.1±0.2 μg/L for the first month (n=47), and 1.0±0.2 μg/L and 1.5±0.3 μg/L for the second to third months (n=27). For the whole group, there was a positive correlation between plasma and urine concentrations (p=0.0001); multiple regression analysis was performed between plasma levels and gestational age at birth (p=?0.002) and postnatal age (NS). Plasma levels of prematures and full terms were statistically different (p=0.03) only for the second- to third-month period. It is suggested that these high Cr levels result from high dietary intakes and/or high absorption rates.  相似文献   

13.
An improved radioreceptor assay for 1,25-dihydroxyvitamin D in human plasma   总被引:4,自引:0,他引:4  
We describe a modified assay technique for quantitating 1,25-dihydroxyvitamin D in plasma. The method involves a rapid extraction of the hormone using minicolumn (made of granular diatomaceous earth) chromatography followed by single-step purification on high-performance liquid chromatography. Quantitation of plasma 1,25-dihydroxyvitamin D is achieved by a radioligand receptor assay employing lyophilized cytosolic receptor protein from chick intestine and high-specific-activity 1,25-dihydroxy[3H]vitamin D3 (166 Ci/mmol). A new incubation medium including an ethanol extract of vitamin D-deficient chick serum yields high specific binding and improves the precision of the radioassay. Bound and free hormone are separated with dextran-coated charcoal of equivalent particle size. The method is sensitive to 0.5 pg/tube with a practical detection range of 1–20 pg/tube, permitting duplicate assay of endogenous 1,25-dihydroxyvitamin D in plasma volumes as small as 0.5 ml. The intra- and interassay coefficient of variation are 5 and 9%, respectively, and the method is valid over a wide-range sample dilution. This assay technique was applied to the measurement of plasma 1,25-dihydroxyvitamin D hormone concentration in normal young adults (55.2 ± 13.6 pg/ml; n = 20) and in patients with chronic renal failure (13.5 ± 5.2 pg/ml; n = 9) and primary hyperparathyroidism (83.3 ± 18 pg/ml; n = 10).  相似文献   

14.
Details of a sensitive and specific radioimmunoassay for androsterone (1) and androsterone sulfate in plasma have been presented. Benzene extracts of plasma were chromatographed on a lumina to isolate the androsterone fraction either (a) directly after extraction (A) or (b) after solvolysis (AS). Following treatment with rabbit anti-A-17-BSA, antibody bound steroid was precipitated by ammonium sulfate. Androsterone concentrations in normal male plasma averaged 57 ± 24 (S.D.) ng/dl, range 35–135 ng/dl and for normal women, 44 ± 21 (S.D.) ng/dl, range 18–98 ng/dl. Androsterone sulfate concentrations were: males 55 ± 28 μg/dl (range 10–114 μg/dl); premenopausal females 52 ± 31 μg/dl (range 16–318 μg/dl).  相似文献   

15.
Analysis of prostaglandin F (PGF) in urine is a useful indicator of renal prostaglandin synthesis. A mass fragmentographic method for PGF analysis in human urine was developed using [3,3,4,4-2H4]PGF as an internal standard and carrier. PGF was extracted from urine (20 ml) with chloroform, purified by preparative thin-layer chromatography and converted to the methyl ester trimethylsilyl ether before analysis by gas chromatograph—mass spectrometry. The specificity of the urine analysis was demonstrated by retention time and the use of two pairs of fragments m/e 494/498 and 513/517 with the same results. The coefficient of variation for duplicate analysis averaged 12.6%, n = 17. Urine from recumbent women contained 4.9 ± 2.6 (S.D.) ng/ml or 4.1 ± 1.0 ng PGF per mg creatinine (n = 10) with little diurnal variation. Male urine contained 5.0 ± 2.7 (S.D.) ng/ml or 3.7 ± 2.1 ng/mg creatinine (n = 10). Similar concentrations were found in boys and in girls. These observations indicate that urinary PGF originates from the kidneys with little contribution from the male accessory sexual glands. This method can also be applied to analysis of PGF in rabbit urine.  相似文献   

16.
Tangier disease (TD) is characterized by extremely low plasma levels of HDL, apoA-I and apoA-II due to very rapid catabolism. However, the risk of premature coronary heart disease (CHD) is not markedly increased in TD. In order to gain insight into reverse cholesterol transport in TD, we isolated LpA-I, LpA-I:A-II, LpA-II and LpA-IV particles from fasting plasma of 5 TD patients. LpA-I composition was similar to control LpA-I, but TD LpA-I had more LCAT and CETP activity (respectively, 0.35 ± 0.14 and 0.14 ± 0.04 μmol of cholesterol esterified/h/μg of protein, and 7 ± 2.5 and 1.4 ± 0.3 μmol of cholesteryl ester transferred/h/μg of protein). In contrast, TD LpA-I:A-II had abnormal composition, with a low molar ratio of apoA-I to apoA-II (0.2–1.33). In addition, LpA-I:A-II in TD contained a substantial amount of apoA-IV compared with control, making this particle an LpA-I:A-II:A-IV complex. LpA-I:A-II from normal plasma do not promote cholesterol efflux from adipocytes cells, whereas TD LpA-I:A-II:A-IV complexes promoted cholesterol efflux from these cells. Moreover LpA-I:A-II:A-IV complexes have more LCAT and CETP activity than control (respectively 1.2 ± 0.16 and 0.01 ± 0.01 μmol of cholesterol esterified/h/μg of protein and, 41 ± 3.7 and 1 ± 0.4 μmol of cholesteryl ester transferred /h/μg of protein). The LpA-II particle in TD represented in fact in LpA-II: A-IV complex (75% mol apoA-II and 22% mol apoA-IV). This particle did not promote cholesterol efflux, but LCAT and CETP activity were present. LpA-IV particles had the capacity to promote cholesterol efflux and had both LCAT and CETP activity. LpA-IV may contribute to maintain the reverse cholesterol transport in TD. Our results indicate the potential importance of apoA-IV in maintaining reverse cholesterol transport in TD. In spite of the low steady state HDL-cholesterol levels in TD, LpA-I, LpA-I: A-II: A-IV complex and LpA-IV appear to be active in reverse cholesterol transport and may help to prevent premature CHD in TD.  相似文献   

17.
It has been suggested (Ueda, T., Otsuka, H. and Goda, K. (1978) J. Biochem. 84, 687–696) that direct cleavage of kynurenine, catalysed by kynureninase, followed by microsomal hydroxylation of the resultant anthranilic acid, may provide an alternative to the established pathway of kynurenine metabolism that involves direct hydroxylation followed by cleavage to 3-hydroxyanthranilic acid. To test this suggestion, anthranilic acid was administered to rats; there was no increase in either the concentration of nicotinamide nucleotides in the liver or the urinary excretion of N1-methyl nicotinamide. However, injection of either kynurenine or 3-hydroxyanthranilic acid did increase the concentration of nicotinamide nucleotides in the liver. The kinetics of kynurenine hydroxylase (Km = 1.8±0.6·10?5 mol/l) and kynureninase (Km = 2.5±0.8·10?4 mol/l, liver steady-state kynurenine = 4.9±0.9 μmol/kg) are such that the preferred route of kynurenine metabolism is probably by way of hydroxylation rather than cleavage.  相似文献   

18.

Background

Cancer patients when treated with different chemotherapeutic drugs often develop mild to severe sight threatening diseases during or after chemotherapy. The mechanism involved in the pathogenesis of ocular toxicities is poorly understood. Oxidative stress, inflammation and MMPs (angiogenic factor) are involved in the progression of chemotherapy related ocular disorders.

Materials and methods

The concentration of oxidative stress markers such as MDA, NO and levels of different antioxidant molecules such as SOD, CAT, GSH, GPx, GPr, VIT A, VIT E and VIT C present in the serum of chemotherapy treated patients (n?=?50) and in normal persons (n?=?20) were estimated by the direct spectrophotometric method while the concentration of TNF-α and MMP-9 activity were determined using human TNF-α and MMP-9 ELISA kits.

Results

The concentration of SOD and CAT (0.356?±?0.05?μg/dl and 1.26?±?0.01?μmol/mol of protein) was significantly lower as compared to that (1.09?±?0.03?μg/dl and 3.99?±?0.04?μmol/mol of protein) in controls. The levels of GPx (0.06?±?0.01?mmol/dl) in the cancer patients were much lower than those in the controls (0.78?±?0.06?mmol/dl). Lower level of GSH (0.96?±?0.003?μg/dl) in serum of the diseased group was observed as compared to healthy group (7.26?±?1.40?μg/dl). The level of Vit A, Vit C and Vit E was lower in systemic circulation of cancer patients (109.99?±?6.35?μg/ml, 1.26?±?0.36?μg/ml and 1.29?±?0.191?μg/ml) as compared to control subjects (166.35?±?14.26?μg/ml, 3.25?±?0.099?μg/ml and 6.354?±?2.26?μg/ml) respectively. The concentration of nitric oxide was significantly higher in the cancer patients (45.26?±?6.35?ng/ml) than that in the normal subjects (16.35?±?3.26?ng/ml). The higher concentration of MDA (8.65?±?3.26?nmol/ml) was observed in the patients than normal ones (1.254?±?0.065?nmol/ml). The quantity of TNF-α was significantly higher in chemotherapy treated patients (32.68?±?4.33?pg/ml) as compared to the control group (20.979?±?1.98?pg/ml). Significantly higher concentration of MMP-9 (40.26?±?3.26?ng/ml) was observed in the cancer patients than the controls (7.256?±?1.95?ng/ml).

Conclusion

Lower levels of antioxidant enzymes and non-enzymatic small molecules and higher levels of oxidative stress and inflammatory clinical parameters such as NO, MDA, TNF-α and MMP-9 may be involved in the pathogenesis of systemic chemotherapy related ocular complications such as cataract, glaucoma, blepharitis, retinitis pigmentosa, macular degeneration, pterygium and retinal degeneration.  相似文献   

19.
Isradipine (PN 200–110) is a highly potent calcium entry blocker with an asymmetrically substituted dihydropyridine ring (methyl- and isopropylester, respectively). The binding of the (+)-(S)-isradipine and (?)-(R)-isradipine to isolated human serum albumin (HSA, 30 μmol/l) and α1-acid glycoprotein (AAG, 10 μmol/l) has been studied in vitro over a wide range of isradipine concentrations (0.06–20 μmol/l) using high-performance liquid chromatography (HPLC). HPLC experiments revealed that both isradipine enantiomers were bound to one class of high-affinity binding sites on the AAG molecule (n(S) = 0.83 ± 0.05, Ka(S) = (1.33 ± 0.25) × 106 1/mol, n(R) = 0.85 ± 0.07, Ka(R) = (1.17 ± 0.44) × 107 l/mol). The (R)-enantiomer also exhibited an interaction with the secondary low-affinity binding sites (n′K′a (R) = (2.66 ± 0.65) × 104 l/mol). In contrast, the pharmacologically more potent (+)-(S)-enantiomer was more strongly bound to HSA than its optical antipode (n(S) = 1.07 ± 0.07, Ka(S) = (1.76 ± 0.26) × 105 l/mol, nKa(R) = (3.62 ± 0.06) × 104 l/mol). In general, the resulting binding characteristics of individual isradipine enantiomers showed stereoselectivity, but this was opposite for the two most important plasma binding proteins. The process of accumulation of isradipine by human platelets in the therapeutically relevant range (10–80 ng/ml) at 37°C was devoid of stereoselectivity. © 1995 Wiley-Liss, Inc.  相似文献   

20.
An ultrafiltration-light absorption spectrometric method for soluble molybdate-reactive silicon was assessed and applied to bovine and ovine blood plasma and sera, giving precise analytical results. Interfering protein above molecular weight 10,000–25,000 was removed by ultrafiltration, and silicon in ultrafiltrates was quantitated by measuring light absorption at 810 nm of the 1,2,4-aminonaphthol sulfonic acid/ascorbic acid-reduced silicomolybdate. Chemical interferences on the color-forming reaction of remaining blood components were tested by measuring recoveries of silicon added to real blood plasma samples and to synthetic blood plasma solutions, the latter containing typical levels of the major ions Na+, K+, Ca2+, HCO3?, and Cl?, together with varying quantities of the potential interferants (amount per analytical reaction): phosphate (0–0.5 mg P), ferric ion (0–3 mg), fluoride (0–1.25 mg), vanadate (0–0.5 mg V), arsenate (0–10 μg As), and germanate (0–0.5 μg Ge). The mean recovery of added 0.8–9 μg silicon/g of bovine and ovine plasma was 97.7% (SE = 1.0, n = 17); the mean recovery of 1 and 5 μg silicon from synthetic blood plasma solutions with interferant levels up to 50-fold that in normal plasma was 99.2% (SE = 0.3, n = 47). Silicon concentrations found in bovine and ovine blood plasma and sera were typically around 7 μg/ml with procedural reagent blanks consistently low at a mean of 0.12 μg/test (SD = 0.011, n = 20). The silicon level in Center for Disease Control bovine serum (reference specimen Lot R-2274) was found to be (mean ± SE, n = 10) 1.147 ± 0.013 μg/g or 1.172 ± 0.013 μg/ml (25°C). The method detectivity (detection limit) was estimated at 0.03 μg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号