首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
Ultrahigh‐Ni layered oxides hold great promise as high‐energy‐density cathodes at an affordable cost for lithium‐ion batteries, yet their practical application is greatly hampered by the poor cyclability. Herein, by employing LiNi0.94Co0.06O2 as a model cathode in a full‐cell configuration, the interphasial and structural evolution processes of ultrahigh‐Ni layered oxides are systematically investigated over the course of their service life (1500 cycles). By applying advanced analytic techniques (e.g., Li‐isotope labeling, region‐of‐interest method), the dynamic chemical evolution on the cathode surface is revealed with spatial resolution, and the correlation between lattice distortion and cathode surface reactivity is established. Benefiting from in situ X‐ray diffraction (XRD) analysis, the ultrahigh‐Ni layered oxide is demonstrated to undergo dual‐phase reaction mechanisms with huge lattice variation, which leads to a decrease in crystallinity and secondary particle pulverization. Furthermore, the critical impact of cathode surface reaction on the graphite anode–electrolyte interphase (AEI) is revealed at nanometer scale, and a universal chemical/physical evolution process of the AEI is illustrated, for the first time. Finally, the practical viability of ultrahigh‐Ni layered oxides is demonstrated through Al‐doping strategy. This work presents a comprehensive understanding of the structural and interphasial degradation of ultrahigh‐Ni layered oxide cathodes for developing high‐energy‐density lithium‐ion batteries.  相似文献   

2.
Nickel‐rich layered oxide cathodes with the composition LiNi1?x?yCoxMnyO2 (NCM, (1?x?y) ≥ 0.6) are under intense scrutiny recently to contend with commercial LiNi0.8Co0.15Al0.05O2 (NCA) for high‐energy‐density batteries for electric vehicles. However, a comprehensive assessment of their electrochemical durability is currently lacking. Herein, two in‐house cathodes, LiNi0.8Co0.15Al0.05O2 and LiNi0.7Co0.15Mn0.15O2, are investigated in a high‐voltage graphite full cell over 1500 charge‐discharge cycles (≈5–10 year service life in vehicles). Despite a lower nickel content, NCM shows more performance deterioration than NCA. Critical underlying degradation processes, including chemical, structural, and mechanical aspects, are analyzed via an arsenal of characterization techniques. Overall, Mn substitution appears far less effective than Al in suppressing active mass dissolution and irreversible phase transitions of the layered oxide cathodes. The active mass dissolution (and crossover) accelerates capacity decline with sustained parasitic reactions on the graphite anode, while the phase transitions are primarily responsible for cell resistance increase and voltage fade. With Al doping, on the other hand, secondary particle pulverization is the more limiting factor for long‐term cyclability compared to Mn. These results establish a fundamental guideline for designing high‐performing Ni‐rich NCM cathodes as a compelling alternative to NCA and other compositions for electric vehicle applications.  相似文献   

3.
Lithium metal batteries (LMBs) combining a Li metal anode with a transition metal (TM) cathode can achieve higher practical energy densities (Wh L?1) than Li/S or Li/O2 cells. Research for improving the electrochemical behavior of the Li metal anode by, for example, modifying the liquid electrolyte is often conducted in symmetrical Li/Li or Li/Cu cells. This study now demonstrates the influence of the TM cathode on the Li metal anode, thus full cell behavior is analyzed in a way not considered so far in research with LMBs. Therefore, the deposition/dissolution behavior of Li metal and the resulting morphology is investigated with three different cathode materials (LiNi0.5Mn1.5O4, LiNi0.6Mn0.2Co0.2O2, and LiFePO4) by post mortem analysis with a scanning electron microscope. The observed large differences of the Li metal morphology are ascribed to the dissolution and crossover of TMs found deposited on Li metal and in the electrolyte by X‐ray photoelectron spectroscopy, energy‐dispersive X‐ray spectroscopy, and total reflection X‐ray fluorescence analysis. To support this correlation, the TM dissolution is simulated by adding Mn salt to the electrolyte. This study offers new insights into the cross talk between the Li metal anodes and TM cathodes, which is essential, when investigating Li metal electrodes for LMB full cells.  相似文献   

4.
Ni‐rich cathodes are considered feasible candidates for high‐energy‐density Li‐ion batteries (LIBs). However, the structural degradation of Ni‐rich cathodes on the micro‐ and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3‐(trimethylsilyl)‐2‐oxazolidinone (TMS‐ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion‐paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS‐ON helps maintain a stable solid–electrolyte interphase (SEI) at Ni‐rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock‐salt structures and enabling the long‐term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS‐ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g?1 after 400 cycles at 45 °C.  相似文献   

5.
Li and Mn‐rich layered cathodes, despite their high specific capacity, suffer from capacity fading and discharge voltage decay upon cycling. Both specific capacity and discharge voltage of Li and Mn‐rich cathodes are stabilized upon cycling by optimized Al doping. Doping Li and Mn‐rich cathode materials Li1.2Ni0.16Mn0.56Co0.08O2 by Al on the account of manganese (as reflected by their stoichiometry) results in a decrease in their specific capacity but increases pronouncedly their stability upon cycling. Li1.2Ni0.16Mn0.51Al0.05Co0.08O2 exhibits 96% capacity retention as compared to 68% capacity retention for Li1.2Ni0.16Mn0.56Co0.08O2 after 100 cycles. This doping also reduces the decrease in the average discharge voltage upon cycling, which is the longstanding fatal drawback of these Li and Mn‐rich cathode materials. The electrochemical impedance study indicates that doping by Al has a surface stabilization effect on these cathode materials. The structural analysis of cycled electrodes by Raman spectroscopy suggests that Al doping also has a bulk stabilizing effect on the layered LiMO2 phase resulting in the better electrochemical performance of Al doped cathode materials as compared to the undoped counterpart. Results from a prolonged systematic work on these cathode materials are presented and the best results that have ever been obtained are reported.  相似文献   

6.
Among the various Ni‐based layered oxide systems in the form of LiNi1‐yzCoyAlzO2 (NCA), the compostions between y = 0.1–0.15, z = 0.05 are the most successful and commercialized cathodes used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, tremendous research effort has been dedicted to searching for better composition in NCA systems to overcome the limitations of these cathodes, particularly those that arise when they are used use at high discharge/charge rates (>5C) and in high temperature (60 °C) environments. In addition, improving the thermal stability at 4.5 V is also very important in terms of the total amount of heat generated and the onset temperature. Here, a new NCA composition in the form of LiNi0.81Co0.1Al0.09O2 (y = 0.1, z = 0.09) is reported for the first time. Compared to the LiNi0.85Co0.1Al0.05O2 cathode, LiNi0.81Co0.1Al0.09O2 exhibits an excellent rate capability of 155 mAh g?1 at 10 C with a cut‐off voltage range between 3 and 4.5 V, corresponding to 562 Wh kg?1 at 24 °C. It additionally provides significantly improved thermal stability and electrochemical performance at the high temperature of 60 °C, with a discharge capacity of 122 mAh g?1 after 200 cycles with capacity retention of 59%.  相似文献   

7.
Layered lithium nickel oxide (LiNiO2) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi0.94Co0.06O2), capable of reaching a 235 mA h g?1 specific capacity. Pouch‐type graphite|LiNi0.94Co0.06O2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.  相似文献   

8.
High energy batteries urgently required to power electric vehicles are restricted by a number of challenges, one of which is the sluggish kinetics of cell reactions under low temperatures. A novel approach is reported to improve the low temperature performance of high energy batteries through rational construction of low impedance anode and cathode interface films. Such films are simultaneously formed on both electrodes via the reduction and oxidation of a salt, lithium difluorobis(oxalato) phosphate. The formation mechanisms of these interface films and their contributions to the improved low temperature performances of high energy batteries are demonstrated using various physical and electrochemical techniques on a graphite/LiNi0.5Co0.2Mn0.3O2 battery using 1 m LiPF6‐ethylene carbonate/ethyl methyl carbonate (1/2, in weight) baseline electrolyte. It is found that the interface impedances, especially the one on the anode, constitute the main obstacle to capacity delivery of high energy batteries at low temperatures, while the salt containing fluorine and oxalate substructures used as additives can effectively suppress them.  相似文献   

9.
Due to the limited oxidation stability (<4 V) of ether oxygen in its polymer structure, polyethylene oxide (PEO)‐based polymer electrolytes are not compatible with high‐voltage (>4 V) cathodes, thus hinder further increases in the energy density of lithium (Li) metal batteries (LMBs). Here, a new type of polymer‐in‐“quasi‐ionic liquid” electrolyte is designed, which reduces the electron density on ethereal oxygens in PEO and ether solvent molecules, induces the formation of stable interfacial layers on both surfaces of the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and the Li metal anode in Li||NMC batteries, and results in a capacity retention of 88.4%, 86.7%, and 79.2% after 300 cycles with a charge cutoff voltage of 4.2, 4.3, and 4.4 V for the LMBs, respectively. Therefore, the use of “quasi‐ionic liquids” is a promising approach to design new polymer electrolytes for high‐voltage and high‐specific‐energy LMBs.  相似文献   

10.
Atomic layer deposition (ALD) of Al2O3 is applied on a polypropylene separator for lithium‐ion batteries. A thin Al2O3 layer (<10 nm) is coated on every surface of the porous polymer microframework without significantly increasing the total separator thickness. The thin Al2O3 ALD coating results in significantly suppressed thermal shrinkage, which may lead to improved safety of the batteries. More importantly, the wettability of Al2O3 ALD‐coated separators in an extremely polar electrolyte based on pure propylene carbonate (PC) solvent is demonstrated, without any decrease in electrochemical performances such as capacity, rate capability, and cycle life. Finally, a LiCoO2/natural graphite full cell is demonstrated under extremely severe conditions (pure PC‐based electrolyte and high (4.5 V) upper cut‐off potential), which is enabled by the Al2O3 ALD coating on all three components (cathode, anode, and separator).  相似文献   

11.
Boron‐doped Li[Ni0.90Co0.05Mn0.05]O2 cathodes are synthesized by adding B2O3 during the lithiation of the hydroxide precursor. Density functional theory confirms that boron doping at a level as low as 1 mol% alters the surface energies to produce a highly textured microstructure that can partially relieve the intrinsic internal strain generated during the deep charging of Li[Ni0.90Co0.05Mn0.05]O2. The 1 mol% B‐Li[Ni0.90Co0.05Mn0.05]O2 cathode thus delivers a discharge capacity of 237 mAh g?1 at 4.3 V, with an outstanding capacity retention of 91% after 100 cycles at 55 °C, which is 15% higher than that of the undoped Li[Ni0.90Co0.05Mn0.05]O2 cathode. This proposed synthesis strategy demonstrates that an optimal microstructure exists for extending the cycle life of Ni‐rich Li[Ni1‐xyCoxMny]O2 cathodes that have an inadequate cycling stability in electric vehicle applications and indicates that an optimal microstructure can be achieved through surface energy modification.  相似文献   

12.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   

13.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

14.
The Li‐rich cathode materials have been considered as one of the most promising cathodes for high energy Li‐ion batteries. However, realization of these materials for use in Li‐ion batteries is currently limited by their intrinsic problems. To overcome this barrier, a new surface treatment concept is proposed in which a hybrid surface layer composed of a reduced graphene oxide (rGO) coating and a chemically activated layer is created. A few layers of GO are first coated on the surface of the Li‐rich cathode material, followed by a hydrazine treatment to produce the reducing agent of GO and the chemical activator of the Li2MnO3 phase. Compared to previous studies, this surface treatment provides substantially improved electrochemical performance in terms of initial Coulombic effiency and retention of discharge voltage. As a result, the surface‐treated 0.4Li­2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 exhibits a high capacity efficiency of 99.5% during the first cycle a the discharge capacity of 250 mAh g?1 (2.0–4.6 V under 0.1C), 94.6% discharge voltage retention during 100 cycles (1C) and the superior capacity retention of 60% at 12C at 24 °C.  相似文献   

15.
Solid‐state Li secondary batteries may become high energy density storage devices for the next generation of electric vehicles, depending on the compatibility of electrode materials and suitable solid electrolytes. Specifically, it is a great challenge to obtain a stable interface between these solid electrolytes and cathodes. Herein, this issue can be effectively addressed by constructing a poly(acrylonitrile‐co‐butadiene) coated layer onto the surface of LiNi0.6Mn0.2Co0.2O2 cathode materials. The polymer layer plays a vital role in working as a protective shell to retard side reaction and ameliorate the contact of the solid–solid interface during the cycling process. In the resultant solid‐state batteries, both rate capacity (99 mA h g?1 at 3 C) and cycling stability (75% capacity retention after 400 cycles) are improved after coating. This impressive performance highlights the great importance of layer modification in the cathode and inspires the development of solid‐state batteries toward practical applications.  相似文献   

16.
A Ni‐rich concentration‐gradient Li[Ni0.865Co0.120Al0.015]O2 (NCA) cathode is prepared with a Ni‐rich core to maximize the discharge capacity and a Co‐rich particle surface to provide structural and chemical stability. Compared to the conventional NCA cathode with a uniform composition, the gradient NCA cathode exhibits improved capacity retention and better thermal stability. Even more remarkably, the gradient NCA cathode maintains 90% of its initial capacity after 100 cycles when cycled at 60 °C, whereas the conventional cathode exhibits poor capacity retention and suffers severe structural deterioration. The superior cycling stability of the gradient NCA cathode largely stemmed from the gradient structure combines with the Co‐rich surface, which provides chemical stability against electrolyte attack and reduces the inherent internal strain observed in all Ni‐rich layered cathodes in their charged state, thus providing structural stability against the repeated anisotropic volume changes during cycling. The high discharge capacity of the proposed gradient NCA cathode extends the driving range of electric vehicles and reduces battery costs. Furthermore, its excellent capacity retention guarantees a long battery life. Therefore, gradient NCA cathodes represent one of the best classes of cathode materials for electric vehicle applications that should satisfy the demands of future electric vehicles.  相似文献   

17.
Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag+ reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi1/3Mn1/3Co1/3O2 cathode (≈1.8 mAh cm?2) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na3V2(PO4)3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.  相似文献   

18.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

19.
All‐solid‐state batteries (ASSBs) with silicon anodes are promising candidates to overcome energy limitations of conventional lithium‐ion batteries. However, silicon undergoes severe volume changes during cycling leading to rapid degradation. In this study, a columnar silicon anode (col‐Si) fabricated by a scalable physical vapor deposition process (PVD) is integrated in all‐solid‐state batteries based on argyrodite‐type electrolyte (Li6PS5Cl, 3 mS cm?1) and Ni‐rich layered oxide cathodes (LiNi0.9Co0.05Mn0.05O2, NCM) with a high specific capacity (210 mAh g?1). The column structure exhibits a 1D breathing mechanism similar to lithium, which preserves the interface toward the electrolyte. Stable cycling is demonstrated for more than 100 cycles with a high coulombic efficiency (CE) of 99.7–99.9% in full cells with industrially relevant areal loadings of 3.5 mAh cm?2, which is the highest value reported so far for ASSB full cells with silicon anodes. Impedance spectroscopy revealed that anode resistance is drastically reduced after first lithiation, which allows high charging currents of 0.9 mA cm?2 at room temperature without the occurrence of dendrites and short circuits. Finally, in‐operando monitoring of pouch cells gave valuable insights into the breathing behavior of the solid‐state cell.  相似文献   

20.
A high voltage LiNi0.5Mn0.3Co0.2O2/graphite cell with a fluorinated electrolyte formulation 1.0 m LiPF6 fluoroethylene carbonate/bis(2,2,2‐trifluoroethyl) carbonate is reported and its electrochemical performance is evaluated at cell voltage of 4.6 V. Comparing with its nonfluorinated electrolyte counterpart, the reported fluorinated one shows much improved Coulombic efficiency and capacity retention when a higher cut‐off voltage (4.6 V) is applied. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy data clearly demonstrate the superior oxidative stability of the new electrolyte. The structural stability of the bulk cathode materials cycled with different electrolytes is extensively studied by X‐ray absorption near edge structure and X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号