首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercapacitor (SC) is one of the most promising electrochemical energy-storage devices. However, the practical application of SCs is limited by the low-energy density. Herein, high-temperature shock (HTS)-derived ultrafine structure-activated porous carbon (UAPC) with N, O functional groups is reported as high-energy density SCs carbon. The process of ultrafast joule heating and cooling effectively transfers general-purposed carbon into electrochemical-activated carbon. The UAPC-based SCs exhibit an energy density of up to 129 Wh kg−1 in EMIMBF4 ionic liquid, which outperform almost all reported and commercial SCs (22 Wh kg−1). The outstanding electrochemical performance of UAPC is attributed to the ultrafine structure and N, O functional groups, which enlarges the surface area, improves the surface wettability of UAPC electrodes, and provides pseudocapacitance. The facile and efficient ultrafast-processing strategy has opened up an unprecedented pathway for the application of low-value carbon for the electrode design and application of SCs.  相似文献   

2.
In a two-electrode system, freshwater sediment was used as a fuel to examine the relationship between current generation and organic matter consumption with different types of electrode. Sediment microbial fuel cells using porous electrodes showed a superior performance in terms of generating current when compared with the use of non-porous electrodes. The maximum current densities with thicker and thin porous electrodes were 45.4 and 37.6 mA m−2, respectively, whereas the value with non-porous electrodes was 13.9 mA m−2. The amount of organic matter removed correlated with the current produced. The redox potential in the anode area under closed-circuit conditions was +246.3 ± 67.7 mV, while that under open-circuit conditions only reached −143.0 ± 7.18 mV. This suggests that an application of this system in organic-rich sediment could provide environmental benefits such as decreasing organic matter and prohibiting methane emission in conjunction with electricity production via an anaerobic oxidation process.  相似文献   

3.

Nickel (Ni), an essential micronutrient and a prime component of the plant enzyme urease, has an indispensable role in plants. Triacontanol (TRIA) is a conspicuous plant growth regulator in agriculture, which proved advantageous in enhancing the overall production of plants. Therefore, an experiment was laid down to understand the effects of Ni toxicity on the menthol mint (Mentha arvensis L.) and its mitigation by exogenously applied TRIA. The different treatments applied to the plants were 0 (control), TRIA (10−6 M), Ni (60 mg kg−1), Ni (80 mg kg−1), TRIA (10−6 M) + Ni (60 mg kg−1), and TRIA (10−6 M) + Ni (80 mg kg−1). This work was evaluated on the basis of various growth, biochemical, physiological, yield and quality parameters. Nickel applied at 80 mg kg−1 of soil exhibited maximum inhibition in the parameters studied. Application of TRIA improved all the growth parameters such as plant height, fresh and dry weights as well as herbage yield under non stress and stressed conditions. The levels of carbonic anhydrase (CA) activity, photosynthetic parameters (chlorophyll and carotenoids), and chlorophyll fluorescence of the plants were also stimulated by TRIA under Ni stress. Exogenous TRIA also displayed positive effects on the cellular antioxidant defense mechanism of Ni-affected plants as it increased the levels of proline (PRO), electrolytic leakage (EL), and activities of antioxidant enzymes, viz. superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), therefore, restrained the triggering of the oxidative burst (reactive oxygen species) in the plant cells. Moreover, TRIA improved the overall production (in terms of yield and content) of EO in the plants and maintained the leaf ultrastructure and root morphology under Ni treatment. GC–MS analysis revealed that TRIA upregulated the level of menthone and menthyl acetate over their respective controls and under Ni-stressed condition.

  相似文献   

4.
Protonic ceramic electrochemical cells (PCECs) hold great promise as an energy conversion and storage technology at lower temperatures (400–650 °C). However, the sluggish reaction kinetics at the oxygen electrode hinder the electrochemical activity of PCECs. Herein, a series of bifunctional oxygen electrodes based on bimetal-doped BaCoO3-𝛿 (BCO) are reported. Doping hampers hexagonal perovskite formation and transforms BCO into cubic perovskite, improving water uptake and hydration abilities. Density functional theory calculations highlight the effects of phase transformation on the proton transport properties of oxygen electrodes. Notably, PCECs incorporating the bimetal-doped electrodes exhibit maximum power densities of 3.15 W cm−2 (650 °C) and 2.25 W cm−2 (600 °C) in fuel cell mode, as well as a current density of 4.21 A cm−2 at 1.3 V (650 °C) in electrolysis cell mode, setting record-high values. The findings provide insights into the rational design of bifunctional oxygen electrodes for high-performance PCECs.  相似文献   

5.
《Chirality》2017,29(5):172-177
A new enantioselective potentiometric sensor containing R‐type chiral porous organic cage CC9 as the chiral selector was designed for the assay of 2‐aminobutanol. Optimized membrane electrodes displayed a linear dynamic range from 10−3 ~ 10−1 mol·L−1 with a detection limit of 2.5 × 10−4 mol·L−1 and a Nernstian response of 27 ± 0.5mV·decade−1 toward S‐2‐aminobutanol within the pH range 7.0–10.0. The potentiometric enantioselectivity coefficient ( ) of this sensor was −1.333, indicating that the porous organic cage‐based electrode exhibited good discrimination toward S‐2‐aminobutanol over R‐2‐aminobutanol.  相似文献   

6.
Here, this work reports an innovative strategy for the synthesis of chemically robust metal–organic frameworks (MOFs), and applies them as catalysts for the electrocatalytic oxygen evolution reaction (OER). A bimetallic squarate-based MOF (Sq-MOF) with a zbr topology serves as an excellent platform for electrocatalytic OER owing to its open porous structure, high affinity toward water, and presence of catalytically active 1D metal hydroxide strips. By regulating the Ni2+ content in a bimetallic squarate MOF system, the electrochemical structural stability toward OER can be improved. The screening of various metal ratios demonstrates that Ni3Fe1 and Ni2Fe1 Sq- zbr -MOFs show the best performance for electrocatalytic OER in terms of catalytic activity and structural stability. Ni2Fe1 Sq- zbr -MOF shows a low overpotential of 230 mV (at 10 mA cm−2) and a small Tafel slope of 37.7 mV dec−1, with an excellent long-term electrochemical stability for the OER. Remarkably, these overpotential values of Ni2Fe1 Sq- zbr -MOF are comparable with those of the best-performing layered double hydroxide (LDH) systems and outperforms the commercially available noble-metal-based RuO2 catalyst for OER under identical operational conditions.  相似文献   

7.
[AuCl4] was initially deposited by electrochemical reduction on a glassy carbon electrode (GCE) to form porous nanogold layer, then prussian blue (PB) was electrodeposited onto the as-prepared nanogold layer, and then secondary nanogold particles were fabricated again on the PB surface by electrochemical reduction for the immobilization of anti-CEA antibodies. The presence of double-layer porous gold nanoparticles enhanced the immobilized amount of biomolecules, and improved the sensitivity of the immunoassay. PB, as a good redox probe, was facile to electrochemical analysis and measurement. Under optimal conditions, the developed immunoassay exhibited dynamic range from 3.0 to 80.0 ng/mL with a detection limit of 0.9 ng/mL CEA (S/N = 3). Moreover, the selectivity, reproducibility and stability of the immunosensor were acceptable.  相似文献   

8.
The influence of electrode surface chemistry over biofilm growth was evaluated for photo‐bioelectrocatalytic fuel cell. A consortium of photosynthetic bacteria was grown onto different electrodes designed with polyethylenimine (PEI) and multiwall carbon nanotubes as hydrophilic and hydrophobic modifier, respectively. The designed electrodes were loaded with 0.08, 0.17, and 0.33 μg/cm2 of PEI to change the hydrophilicity. However, 0.56, 0.72, and 0.83 mg/cm2 of multiwall carbon nanotubes were used to alter the hydrophobicity of the electrodes. The surface chemistry of electrode and bio‐interaction was evaluated as a function of contact angle and biofilm formation. The results were compared with those obtained with a carbon paper electrode. The contact angle on the untreated electrode (carbon paper) was 118°, whereas for hydrophobic and hydrophilic electrodes, the maximum and minimum contact angles were 170° and 0°, respectively. Interestingly, the maximum biofilm growth (0.2275 g, wet basis) was observed on highly hydrophobic surface; however, the maximum electrochemical performance (246 mV) was shown by the most hydrophilic electrode surface. PEI‐based electrode with good biofilm formation showed comparatively higher electrogenic activity.  相似文献   

9.
Large-scale application of alkaline water electrolysis for high-rate hydrogen production is severely hindered by high electricity cost, mainly due to difficulties to acquire cost-effective catalytic electrodes with both extremely low overpotential and long-term durability at ultrahigh current densities (≥1 A cm−2). Here it is demonstrated that by adopting a synthetic method of laser direct writing in liquid nitrogen via a commercial laser welding machine, a remarkably efficient and durable electrode with large area and low platinum content is obtained, where PtNi nanocatalysts with dislocation network are firmly welded on a nickel foam (NF). The dense dislocation network not only improves intrinsic activity of a majority of surface-active sites induced by coupled compressive-tensile strains synergistically promoting both Volmer and Tafel steps of alkaline hydrogen evolution reaction (HER), but also well stabilizes surface dislocations for HER at ultrahigh current densities. Such a robust electrode achieves record-low overpotentials of 5 and 63 mV at 10 and 1000 mA cm−2 in alkaline medium, respectively, exhibiting negligible activity decay after 300 h chronoamperometric test at 1 A cm−2. It displays a high Pt mass activity 16 times higher than 20 wt% Pt/C loaded on NF, surpassing most of the recently reported efficient Pt-based catalysts.  相似文献   

10.
Nickel (Ni) may impair plant water balance through detrimental effects on the belowground level. Bilberry (Vaccinium myrtillus L.) plants were grown in a mesic heath forest-type soil and subjected to Ni sulphate (NiSO4·6H2O) concentrations of 0, 10, 50, 100 and 500 mg m−2 during an entire growing season in northern Finland (65°N). Biomass of belowground rhizomes, and tissue water content (TWC) and anthocyanin concentrations of aerial shoots were determined from mature plants in order to study rhizospheric Ni stress, and its possible long-distance effects on aerial shoots. As the major proportion of biomass of bilberry is invested in belowground parts, it was hypothesised that Ni-induced rhizospheric disturbance causes water stress in aerial shoots and increases their anthocyanin concentrations for osmotic regulation. Uptake of Ni from the soil to the rhizome and aerial shoots was measured with X-ray fluorescence spectrometry. Ni concentrations in the soil and rhizome exhibited a dose–response relationship, but the concentrations in the rhizome were about 10-fold lower (<3 mg Ni kg−1) than those in the soil (<30 mg Ni kg−1). Translocation of Ni from the rhizome to aerial shoots did not occur, as Ni concentrations in shoots remained at 1 mg Ni kg−1. Although Ni concentrations in the rhizome were below the threshold values of Ni toxicity (i.e. 10–50 mg Ni kg−1), Ni decreased the rhizome biomass. Anthocyanins decreased in aerial shoots along with the Ni accumulation in the rhizome, while TWC was unaffected. The result suggests that anthocyanins are not involved in osmotic regulation under Ni stress, since anthocyanins in aerial shoots responded to the Ni concentrations in the rhizome despite the lack of water stress.  相似文献   

11.

A set of carbon monoxide (CO) gas sensors based on porous silicon (PSi)/gold nanoparticle (AuNP) hetro structures were fabricated. Different forms of PSi surface morphologies were studied as a substrate for growth of AuNPs. Simple dipping process of PSi in hydrogen tetrachloroaurate (III) solution (HAuCl4) at fixed concentrations of 10−2 M/3.5 HF was used to synthesize AuNPs. The n-type PSi was equipped through photo-electrochemical etching process at current density value of 10 mA/cm2 under illumination condition of 530-nm wavelength and laser illumination intensity of 20 to 80 mW/cm2. Three different forms of PSi morphology, meso, macro, and double layers with pore shapes and sizes, were prepared. The structural and surface morphology properties of PSi-based substrate before and after deposition of AuNPs were investigated through studying of scanning electron microscopy (SEM), photoluminescence (PL), and X-ray diffraction (XRD). The electrical property (J-V) was carried out in primary vacuum and CO at low pressure. The results show that PSi surface morphologies strongly influenced the AuNP sizes and hence the sensor performance. It was found that decrease the AuNP sizes could be occasioned in high and fast current response.

  相似文献   

12.
CO2 electrochemical reduction (CO2RR) can mitigate environmental issues while providing valuable products, yet challenging in activity, selectivity, and stability. Here, a CuS-Bi2S3 heterojunction precursor is reported that can in situ reconstruct to Cu-doped Bismuth (CDB) electrocatalyst during CO2RR. The CDB exhibits an industrial-compatible current density of −1.1 A cm−2 and a record-high formate formation rate of 21.0 mmol h−1 cm−2 at −0.86 V versus the reversible hydrogen electrode toward CO2RR to formate, dramatically outperforming currently reported catalysts. Importantly, the ultrawide potential region of 1050 mV with high formate Faradaic efficiency of over 90% and superior long-term stability for more than 100 h at −400 mA cm−2 can also be realized. Experimental and theoretical studies reveal that the remarkable CO2RR performance of CDB results from the doping effect of Cu which optimizes adsorption of the *OCHO and boosts the structural stability of metallic bismuth catalyst. This study provides valuable inspiration for the design of element-doping electrocatalysts to enhance catalytic activity and durability.  相似文献   

13.
Earth‐abundant amorphous nanomaterials with rich structural defects are promising alternative catalysts to noble metals for an efficient electrochemical oxygen evolution reaction; however, their inferior electrical conductivity and poor morphological control during synthesis hamper the full realization of their potency in electrocatalysis. Herein, a rapid surface‐guided synthetic approach is proposed to introduce amorphous and mixed‐metal oxyhydroxide overlayers on ultrathin Ni‐doped MnO2 (Ni? MnO2) nanosheet arrays via a galvanic replacement mechanism. This method results in a monolithic 3D porous catalyst with a small overpotential of only 232 mV to achieve a current density of 10 mA cm?2 in 1 m KOH, which is much lower than the corresponding value of 307 mV for the Ni? MnO2 reference sample. Detailed structural and electrochemical characterization reveal that the unique Ni? MnO2 ultrathin nanosheet arrays do not only provide a large surface area to guide the formation of active amorphous catalyst layers but also ensure the effective charge transport owing to their high electron conductivity, collectively contributing to the greatly improved catalyst activity. It is envisioned that this highly operable surface‐guide synthetic strategy may open up new avenues for the design and fabrication of novel 3D nanoarchitectures integrated with functional amorphous materials for broadened ranges of applications.  相似文献   

14.
Exploring highly‐efficient and low‐cost electrodes for both hydrogen and oxygen evolution reaction (HER and OER) is of primary importance to economical water splitting. Herein, a series of novel and robust bifunctional boride‐based electrodes are successfully fabricated using a versatile Et2NHBH3‐involved electroless plating (EP) approach via deposition of nonprecious boride‐based catalysts on various substrates. Owing to the unique binder‐free porous nodule structure induced by the hydrogen release EP reaction, most of the nonprecious boride‐based electrodes are highly efficient for overall water splitting. As a distinctive example, the Co‐B/Ni electrode can afford 10 mA cm?2 at overpotentials of only 70 mV for HER and 140 mV for OER, and can also survive at large current density of 1000 mA cm?2 for over 20 h without performance degradation in 1.0 m KOH. Several boride‐based two‐electrode electrolyzers can achieve 10 mA cm?2 at low voltages of around 1.4 V. Moreover, the facile EP approach is economically viable for flexible and large size electrode production.  相似文献   

15.
In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol–gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM−1 cm−2. The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.  相似文献   

16.
Novel xanthine biosensors were successfully fabricated by immobilizing xanthine oxidase on polyvinylferrocenium perchlorate matrix (PVF+ClO4) and platinum electrodeposited polyvinylferrocenium perchlorate matrix. PVF+ClO4 film was coated on Pt electrode at +0.7 V vs. Ag/AgCl by electrooxidation of polyvinylferrocene (PVF). Platinum nanoparticles were deposited on PVF+ClO4 electrode by electrochemical deposition in 2.0 mM H2PtCl6 solution at −0.2 V. Xanthine oxidase was incorporated into the polymer matrix via ion exchange process by immersing modified Pt electrodes in the enzyme solution. The amperometric responses of the biosensors were measured via monitoring oxidation current of hydrogen peroxide at +0.5 V. Under the optimal conditions, the linear ranges of xanthine detection were determined as 1.73 × 10−3–1.74 mM for PVF+XO and 0.43 × 10−3–2.84 mM for PVF+XO/Pt. The detection limits of xanthine were 5.20 × 10−4 mM for PVF+XO and 1.30 × 10−4 mM for PVF+XO/Pt. Moreover, the effects of applied potential, electrodeposition potential, H2PtCl6 concentration, amount of electrodeposited Pt nanoparticles, thickness of polymeric film, temperature, immobilization time, xanthine and xanthine oxidase concentrations on the response currents of the biosensors were investigated in detail. The effects of interferents, the operational and storage stabilities of biosensors and the applicabilities to drug samples of the biosensors analysis were also evaluated.  相似文献   

17.
《IRBM》2008,29(2-3):192-201
In this report, we describe a novel strategy for the design of a clinical urea biosensor using a process based on assembled multilayer systems. Biotinylated enzyme (urease–subiotin) was immobilized on the biotinylated polypyrrole coated Chemical field effect capacitance (ChemFEC) devices using the high avidin–biotin affinity. The immobilized enzyme activity was checked by its catalytic conversion of urea into carbon dioxide and ammonia. Electrochemical response of the bridge system constructed on Si/SiO2/Si3N4 electrodes to urea addition was evaluated using the capacity–potential measurements. In addition, contact-angle measurements were carried out to control the change of surface energy and their components before and after each layer formation. The developed urea biosensor demonstrates high performances: a good sensitivity of 50 mV/pUrea in the linear urea concentration range from 10−4 to 10−1 M and an excellent operational stability after three weeks of continuous use. The immobilized urease was characterised through its apparent Michaelis–Menten constant (5 mM) and the activation energy of the enzymatic reaction (20 kJ mol−1). It was also shown that capacitive measurements can be used to quantify the interaction between molecular systems, based on avidin and biotin molecules.  相似文献   

18.
Glucose oxidase (GOx) was immobilized onto glassy carbon electrode (GCE) that modified by reduced graphene oxide-gold nanoparticles- poly neutral red (RGO/AuNPs/PNR) nanocomposite. The composite was analyzed by scanning electron microscope (SEM), energy dispersive x-ray (EDX) spectroscopy, atomic force microscopy (AFM), attenuated total reflectance (ATR), cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). SEM/EDX analysis showed the morphological of the nanocomposite. AFM results showed the morphology and structure of the RGO/AuNPs and RGO surfaces. The covalent bonding between glucose oxidase and composite was confirmed by ATR technique. The electrochemical experiments were done in 100 mM phosphate buffer at pH 7 and temperature of 25 °C with three electrodes including Ag/AgCl, platinum wire and the modified GCE as the reference electrode, the auxiliary electrode and working electrode respectively. The electrochemical results confirmed the activity and direct electron transfer of immobilized enzyme. The immobilized electroactive GOx concentration was estimated 3.06 × 10−11 mol cm−2. The results showed the immobilized enzyme had a good stability and maintained 90% of its performance after two weeks. The nanocomposite bioanode in an air-birthing biofuel cell and 100 mM glucose concentration showed 176 μWcm−2 Power density. This strategy could be used for GOx-based biofuel cells.  相似文献   

19.
A microbial fuel-cell type activity sensor integrated into 500 mL and 3.2 L bioreactors was employed for ampero- (μA) and potentiometric (mV) measurements. The aim was to follow the microbial activity during ethanol production by Saccharomyces cerevisiae and to detect the end of carbohydrate consumption. Three different sensor setups were tested to record electrochemical signals produced by the metabolism of glucose and fructose (1:1) online. In a first setup, a reference electrode was used to record the potentiometric values, which rose from 0.26 to 0.5 V in about 10 h during the growth phase. In a second setup, a combination of ampero- and pseudo-potentiometric measurements delivered a maximum voltage of 35 mV. In this arrangement, the pseudo-potentiometric signal changed in a manner that was directly proportional to the amperometric signals, which reached a maximum value of 32 μA. In a third type of arrangement, a reference electrode was added to the anodic bioreactor compartment to carry out ampero- and potentiometric measurements; this is made possible by the high internal resistance of the cultivation. In this case, the reference potential rose to 0.44 V while the current maximum recorded by the working electrodes reached 27 μA. Reference and pseudo-reference electrodes were in all cases K3Fe(CN)6/carbon. Electrodes were made of 9 cm2 woven graphite. To compare the electrochemical signals with established values, the metabolism was also monitored for optical density (at 600 nm) indicating biomass production. For fructose and glucose conversion, HPLC with an Aminex column and RI detector was used, and ethanol production was analyzed by GC with methanol as internal standard. The combination of amperometric and potentiometric recordings was found to be an ideal setup and was successfully used in reproducible cultivations.  相似文献   

20.
The controllable synthesis of single‐crystallized iron‐cobalt carbonate hydroxide nanosheets array on 3D conductive Ni foam (FCCH/NF) as a monolithic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalyst for full water splitting is described. The results demonstrate that the incorporation of Fe can effectively tune the morphology, composition, electronic structure, and electrochemical active surface area of the electrocatalysts, thus greatly enhancing the intrinsic electrocatalytic activity. The optimal electrocatalyst (F0.25C1CH/NF) can deliver 10 and 1000 mA cm?2 at very small overpotentials of 77 and 256 mV for HER and 228 and 308 mV for OER in 1.0 m KOH without significant interference from gas evolution. The F0.25C1CH‐based two‐electrode alkaline water electrolyzer only requires cell voltages of 1.45 and 1.52 V to achieve current densities of 10 and 500 mA cm?2. The results demonstrate that such fascinating electrocatalytic activity can be ascribed to the increase in the catalytic active surface area, facilitated electron and mass transport properties, and the synergistic interactions because of the incorporation of Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号