首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A gas—liquid chromatographic procedure (GLC) is described for the determination of clonazepam in plasma. The drug is extracted from buffered plasma at pH 9.0 with diethyl ether and then back-extracted into 6 N hydrochloric acid—6 N sulfuric acid (95:5) and hydrolyzed at 100°C to convert the drug into its benzophenone derivative. The benzophenone derivative of flurazepam is added to plasma as an internal reference standard. Drug derivatives are finally extracted from the neutralized aqueous phase and assayed by GLC. The present procedure makes use of a nitrogen-sensitive detector which is more stable and selective than the commonly employed electron-capture procedure. The sensitivity of the detector for clonazepam is 1 ng/ml.  相似文献   

2.
A reversed-phase high-performance liquid chromatographic assay (HPLC) was utilized for monitoring xanomeline (LY246708/NNC 11–0232) and a metabolite, desmethylxanomeline, in human plasma. Xanomeline, desmethylxanomeline and internal standard were extracted from plasma with hexane at basic pH. The organic solvent extract was evaporated to dryness with nitrogen and the dried residue was reconstituted with 0.2 M HCl-methanol (50:50, v/v). A Zorbax CN 150 × 4.6 mm I.D., 5-μm column and mobile phase consisting of 0.5% (5 ml/l) triethylamine (TEA) adjusted to pH 3.0 with concentrated orthophosphoric acid-tetrahydrofuran (THF) (70:30, v/v) produced consistent resolution of analytes from endogenous co-extracted plasma components. Column effluent was monitored at 296 nm/0.008 a.u.f.s. and the assay limit of quantification was 1.5 ng/ml. A linear response of 1.5 to 20 ng/ml was sufficient to monitor plasma drug/metabolite concentrations during clinical trials. HPLC assay validation as well as routine assay quality control (QC) samples indicated assay precision/accuracy was better than ±15%.  相似文献   

3.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

4.
A high-performance liquid chromatographic method is described for the determination of citalopram [1-(3-(dimethylaminopropyl)-1-(4-fluorophenyl)-5-phthalancarbonitrile] and its two main metabolites (the methylamino and amino derivatives). The compounds were extracted from alkaline plasma with diethyl ether. The combined ether layers were evaporated after addition of 50 μl of 0.1 N HCl. The residual extracts were purified with diethyl ether and 20 μl were injected into a Spherisorb ODS 5-μm column with acetonitrile–0.6% phosphate buffer pH 3 (55:45, v/v) as the mobile phase. Using a fluorescence detector the detection limits are 1 ng/ml of plasma for citalopram and the methylamino metabolite and 0.5 ng/ml for the amino metabolite.  相似文献   

5.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

6.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the prokinetic drug cisapride is described. Alkalinised samples of plasma (100 μl) were extracted with 1.0 ml of 10% (v/v) isopropanol in chloroform, dried, redissolved in mobile phase and injected. Chromatography was performed at 20°C by pumping a mobile phase of acetonitrile (370 ml) in pH 5.2, 0.02 M phosphate buffer (630 ml) at 1.0 ml/min through a C8 Symmetry column. Cisapride and the internal standard were detected by fluorescence monitoring at 295 nm (excitation) and 350 nm (emission), and were eluted 5 min and 8 min, respectively, after injection. Calibration plots in bovine serum albumin (3% w/v) were linear (r > 0.999) from 5 to 250 ng/ml. Intra-day and inter-day precision (C.V.) was 9.5%, or less, and the accuracy was within 5.5% of the nominal concentration over the range 8–200 ng/ml. Total assay recovery was above 82%. Endogenous plasma components, major cisapride metabolite (norcisapride), and other durgs used in neonatal pharmacotherapeutics did not interfere.  相似文献   

7.
A simple and selective ion-pair HPLC method has been developed for the analysis of clarithromycin in aqueous solutions and in gastric juice. A Hypersil ODS 5-μm (150 × 4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer (pH 4.6) containing 5 mM 1-octanesulphonic acid (50:50, v/v). The column temperature was 50°C and detection was by UV absorption (210 nm). The limits of detection of 50-μl samples were 0.4 μg/ml (aqueous) and 0.78 μg/ml (0.5 ml gastric juice) or better. The assay was linear in the range of 1.56 to 100 μg/ml with r2 values greater than 0.99. The recovery from the gastric juice samples was 98.5±2.9%. The method was applied successfully to determine the stability of clarithromycin in 0.01 M HCl and gastric juice.  相似文献   

8.
A gas chromatographic–mass spectrometric (GC–MS) assay was developed for the quantitative analysis of methyl salicylate (MeS), ethyl salicylate (ES) and salicylic acid (SA) from biological fluids. The method was validated from 100-μl rat liver homogenate preparations (5 mg/ml protein) in 70 mM KH2PO4 (pH 7.4) buffer and from 100 μl rat plasma. The samples were extracted with chloroform, derivatized with BSTFA and quantitated by GC–MS in the SIM mode. The standard curves ranged from 31 ng/ml to 800 or 1250 ng/ml. Relative standard deviations and bias were less than 11% in plasma and homogenate for all compounds except SA which evidenced greater variability. The assay was used in preliminary experiments to characterize the pharmacokinetics of MeS in rats.  相似文献   

9.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

10.
A liquid chromatographic–mass spectrometric (LC–MS) assay was developed and validated for the determination of itraconazole (ITZ) in rat heparinized plasma using reversed-phase HPLC combined with positive atmospheric pressure ionization (API) mass spectrometry. After protein precipitation of plasma samples (0.1 ml) with acetonitrile containing nefazodone as an internal standard (I.S.), a 50-μl aliquot of the supernatant was mixed with 100 μl of 10 mM ammonium formate (pH 4.0). An aliquot of 25 μl of the mixture was injected onto a BDS Hypersil C18 column (50×2 mm; 3 μm) at a flow-rate of 0.3 ml/min. The mobile phase comprising of 10 mM ammonium formate (pH 4) and acetonitrile (60:40, v/v) was used in an isocratic condition, and ITZ was detected in single ion monitoring (SIM) mode. Standard curves were linear (r2≥0.994) over the concentration range of 4–1000 ng/ml. The mean predicted concentrations of the quality control (QC) samples deviated by less than 10% from the corresponding nominal values; the intra-assay and inter-assay precision of the assay were within 8% relative standard deviation. Both ITZ and I.S. were stable in the injection solvent at room temperature for at least 24 h. The extraction recovery of ITZ was 96%. The validated assay was applied to a pharmacokinetic study of ITZ in rats following administration of a single dose of itraconazole (15 mg/kg).  相似文献   

11.
An improved, more efficient method for the determination of metoprolol and its two metabolites in human urine is reported. The simultaneous analysis of the zwitterionic metoprolol acidic metabolite (III, H117/04) with the basic metabolites α-hydroxymetoprolol (II, H119/66), metoprolol (I) and guanoxan (IV, internal standard) was achieved employing solid-phase extraction and isocratic reversed-phase HPLC. The analytes were extracted from urine (100 μl) using C18 solid-phase extraction cartridges (100 mg), and eluted with aqueous acetic acid (0.1%, v/v)–methanol mixture (40:60, v/v, 1.2 ml). The eluents were concentrated (250 μl) under vacuum, and aliquots (100 μl) were analysed by HPLC with fluorescence detection at 229 nm (excitation) and 309 nm (emission) using simple isocratic reversed-phase HPLC (Novapak C18 radial compression cartridge, 4 μm, 100×5 mm I.D.). Acetonitrile–methanol–TEA/phosphate buffer pH 3.0 (9:1:90, v/v) was employed as the eluent (1.4 ml/min). All components were fully resolved within 18 min, and the calibration curves for the individual analytes were linear (r2≥0.996) within the concentration range of 0.25–40.0 mg/ml. Recoveries for all four analytes were greater than 76% (n=4). The assay method was validated with intra-day and inter-day variations less than 2.5%.  相似文献   

12.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

13.
A method is given for the determination of carminomycin (CMM) and a major metabolite carminomycinol (CMMOH) in serum from cancer patients after intravenous administration of carminomycin as the free drug.CMM and CMMOH are extracted from serum with chloroform, the extract evaporated and the residue dissolved in methanol. High-performance liquid chromatography analysis utilized a C18 μBondapak reversed-phase column eluted with 0.1 mol/l acetate buffer (pH 4) — acetonitrile (60:40, v/v) with fluorescence detection. The assay is linear, reproducible, and precise with a limit of detection of 2 ng/ml. Representative serum levels of CMM and CMMOH in a cancer patient are presented.  相似文献   

14.
In this work, a method for the determination of the antihistaminic drugs loratadine and pheniramine from human serum is presented. Serum samples are extracted under basic conditions with hexane-n-amyl alcohol (95:5, v/v), the analytes are reextracted into diluted hydrochloric acid and, after basification, are once again extracted into the organic phase. The samples are measured by GC-MS. The limits of detection of the assay are 0.5 ng/ml for loratadine and 2 ng/ml for pheniramine. The R.S.D.s in the day-to-day precision test for loratadine are 7.0% at 20 ng/ml and 12.4% at 2 ng/ml. For pheniramine, the R.S.D. are 6.4% at 300 ng/ml and 10.2% at 20 ng/ml.  相似文献   

15.
The objective of the study was to develop a sensitive and specific assay for studying the pharmacokinetics of a novel calcium antagonist, a benzimidazolyl-substituted tetraline derivative, mibefradil (I) in the dog. The assay involves liquid-liquid extraction of a biological sample, reversed-phase HPLC separation and fluorescence detection (λex = 270 nm and λem = 300 nm) of a sample components. Each sample was eluted with a mobile phase pumping at a flow-rate of 2 ml/min. The mobile phase composition was a mixture of acetonitrile and aqueous solution (38:62, v/v). The aqueous solution contains 0.0393 M KH2PO4 and 0.0082 M Na-pentanesulphonic acid. The retention times were 10.7 min for I, and 12.2 min for internal standard Ro 40–6792. Calibration curves with concentrations of I ranging from 10 to 500 ng/ml were linear (r2 > 0.99). The detection limit for I was 0.5 ng/ml when 0.5 ml of plasma or urine was used. Intra- and inter-day accuracy and precision were within 10%. The assay was successfully applied to the pharmacokinetic studies of I in dogs.  相似文献   

16.
For the identification of drug abuse, a simple and rapid method which allows us to distinguish enantiomers of methamphetamine (MA) and its metabolites amphetamine (AP) and p-hydroxymethamphetamine (p-OHMA) in human urine was explored by coupling direct HPLC and HPLC-thermospray-mass spectrometry (HPLC-TSP-MS) both of which employ a β-cyclodextrin phenylcarbamate-bonded silica column. HPLC analysis was performed after the solid-phase extraction from the urine sample with Bond Elut SCX, and d- and l-enantiomers of MA, AP and p-OHMA could be separated well. The proposed conditions are as follows: eluent, acetonitrile-methanol-50 mM potassium phosphate buffer (pH 6.0) (10:30:60, v/v) flow-rate, 1.0 ml/min temperature, 25°C. The linear calibration curves were obtained for d- and l- MA and AP in the concentration range from 0.2 to 20 μg/ml; the relative standard deviation for d- and l-AP and d- and, l-MA ranged from 1.67 to 2.35% at 2 μg/ml and the detection limits were 50 ng/ml for d- and l-AP and d-MA and 100 ng/ml for l-MA. For the verification of the direct HPLC identification, HPLC-TSP-MS was also carried out under the same conditions except that acetonitrile-methanol-100 mM ammonium acetate (pH 6.0) (10:30:60, v/v) was used as an eluent. Upon applying the scan mode, 10 ng/ml for d- and l-AP and d-MA and 20 ng/ml for l-MA were the detection limits. Using the selected ion monitoring mode, 0.5 ng/ml, 0.8 ng/ml and 1 ng/ml could be detected for d- and l-AP, d-MA and l-MA, respectively.  相似文献   

17.
A high-performance liquid chromatographic method for the determination of the histamine H1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)—methanol—tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10 μg/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is <6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10 μg/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay.  相似文献   

18.
A new high-performance liquid chromatographic method for the simultaneous determination of indinavir, saquinavir and ritonavir in human plasma is described. Quantitative recovery following liquid–liquid extraction with diethyl ether from 500 μl of human plasma was achieved. Subsequently, the assay was performed with a linear gradient starting at 67 mM potassium dihydrogenphosphate–acetonitrile (65:35 to 40:60, v/v) as a mobile phase, a Phenomenex C18 column and UV detection at 240 and 258 nm, respectively. Linear standard curves were obtained for concentrations ranging from 75 to 20 000 ng/ml for indinavir, from 10 to 6000 ng/ml for saquinavir, and from 45 to 30 000 ng/ml for ritonavir. The calculated intra- and inter-day coefficients of variation were below 6%.  相似文献   

19.
We have developed and validated a sensitive and selective method for the determination of the P-glycoprotein modulator GF120918 in murine and human plasma. Chlorpromazine is used as internal standard. Sample pretreatment involves liquid–liquid extraction with tert-butyl methyl ether. Chromatographic separation is achieved by reversed-phase high-performance liquid chromatography using a Symmetry C18 column and detection was accomplished with a fluorescence detector set at excitation and emission wavelengths of 260 and 460 nm, respectively. The mobile phase consists of acetonitrile–50 mM ammonium acetate buffer, pH 4.2 (35:65, v/v). To achieve good separation from endogenous compounds and to improve the peak shape the counter-ion 1-octane sulfonic acid (final concentration 0.005 M) was added to the mobile phase. The lower limit of quantitation was 5.7 ng/ml using 200 μl of human plasma and 23 ng/ml using 50 μl of murine plasma. Within the dynamic range of the calibration curve (5.7–571 ng/ml) the accuracy was close to 100% and within-day and between-day precision were within the generally accepted 15% range. The stability of GF120918 was tested in plasma and blood from mice and humans incubated at 4°C, room temperature, and 37°C for up to 4 h. No losses were observed under these conditions. This method was applied to study the pharmacokinetics of orally administered GF120918 in humans and mice. The sensitivity of the assay was sufficient to determine the concentration in plasma samples obtained up to 24 h after drug administration.  相似文献   

20.
A rapid high-performance liquid chromatography assay has been developed for the drug atovaquone, which is currently being used to treat Pneumocystis carinii pneumonia and Taxoplasma gondii encephalitis associated with the acquired immunodeficiency syndrome (AIDS). Protein is precipitated from plasma with acetonitrile-aqueous 1% acetic acid (85:15). The supernatant is assayed on a C6 column using methanol-10 mM triethylamine in aqueous 0.2% trifluoroacetic acid (76:24) with detection at 254 nm. The working assay range was 0.5 to 50 μg/ml. Recovery was 97% and the between-day coefficients of variation were 2.1% at 50 μg/ml and 10.3% at 1 μg/ml. A number of drugs commonly used to treat AIDS and its complications did not interfere with the assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号