首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the simultaneous determination of hydroperoxides of phosphatidylcholines (PC), triacylglycerols (TG) and cholesterol esters (CE) has been developed. A sample was separated into a combined TG and CE hydroperoxides fraction and a PC hydroperoxides fraction on a short silica column. The fractions were introduced into an ODS column and another silica column by a valve-switching device. The PC hydroperoxides were monitored by a post-column detection system with diphenyl-1-pyrenylphosphine, and the TG and CE hydroperoxides were monitored by another switching device. With this system, the hydroperoxides were determined at the picomole level within 32 min. Their detection limits were 2–4 pmol at a signal-to-noise ratio of 3, and the relative standard deviations of the peak areas were 1.6–3.1%. This method was successfully applied to determine lipid hydroperoxides in human plasma.  相似文献   

2.
This method describes the determination of propiomazine by direct injection of rat plasma into a chromatography system based on coupled reversed-phase columns. An extraction column, packed with porous silica particles with covalent-bound 1-acid glycoprotein (AGP), was used to separate the plasma proteins from the analyte. After isolation the analyte was transferred to the analytical column for separation and detection. Propiomazine was detected by an electrochemical detector and the limit of quantification was 2.0 ng/ml (100 pg injected). The absolute recovery was 80.9±2.4% at 9.0 ng/ml level. The inter-day and intra-day precision was 10.9% (5.6 ng/ml) and 2.8% (9.0 ng/ml), respectively.  相似文献   

3.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

4.
A new method for the detection of various lipid hydroperoxides and hydrogen peroxide at the picomole level has been developed by combining an HPLC system with an ultrasensitive analytical system based on the detection of chemiluminescence emitted by isoluminol in the presence of hydroperoxide and microperoxidase. This HPLC separation removes interfering antioxidants so that the method can be applied to biological samples such as blood plasma lipids. Several HPLC conditions are described which allow simple identification of different lipid hydroperoxides.  相似文献   

5.
A new method of determining coenzyme Q10 in human plasma was developed based on column-switching high performance liquid chromatography (HPLC). CoQ10 was quantitatively extracted into 1-propanol with a fast one-step extraction procedure, after centrifugation, the supernatant was cleaned on an octadecyl-bonded silica column and then transferred to reversed-phase column by a column-switching valve. Determination of CoQ10 was performed on a reversed-phase analytical column with ultraviolet detection at 275 nm and the mobile phase containing 10% (v/v) isopropanol in methanol at a flow-rate of 1.5 ml/min. The sensitivity of this method allows the detection of 0.1 microg/ml CoQ10 in plasma (S/N=3). The linearity between the concentration and peak height is from 0.05 to 20 mg/l. The reproducibility (R.S.D.%) of the method is less than 2% (within day) and less than 3% (between day), the average recovery is 100.9 + 2.1%, it takes only 30 min to complete an analysis procedure, suitable for the determination of CoQ10 in human plasma especially for batch analysis in clinical laboratories. Finally, the method was applied to determine the plasma CoQ10 levels in healthy subjects, hyperthyroid and hypothyroid patients.  相似文献   

6.
A quantitative consecutive method was developed for analysis of sphingoglycolipids in biological materials by high performance liquid chromatography (HPLC). Crude lipid extracts were separated into neutral and acidic fractions on a DEAE-Sephadex column. Glycolipid fractions were obtained by acetylation and Florisil column chromatography, and the acetylated glycolipids were N-p-nitrobenzoylated by treatment with p-nitrobenzoyl chloride in pyridine at 60 degrees C for 6 h. Excess reagent and by-products were removed by solvent partition and gel filtration. The glycolipid derivatives were analyzed by their absorption at 254 nm on Zorbax SIL, a silica gel column, with a gradient of 0.5--7% isopropanol in hexane-chloroform (2 : 1, v/v) at a flow rate of 0.5 ml/min. The detector response was linear with up to 60 nmol of injected glycolipids. The practical lower limit of detection was about 50 pmol. The derivatives were separated on the basis of their sugar chains. Effluents corresponding to each peak were collected and analyzed further on the basis of their lipid portion on mu-Bondapak C18, a reversed phase column. This combined procedure was applied to the analysis of erythrocyte glycolipids. Samples containing as little as 20 micrograms of glycolipids could be analyzed by this method.  相似文献   

7.
A fast, simple and sensitive column-switching high-performance liquid chromatography (HPLC)-fluorescence detection method was developed on a monolithic silica column for the determination of N(G),N(G)-dimethyl-L-arginine (ADMA), which is an endogenous nitric oxide synthase inhibitor. After fluorescence derivatization of plasma samples or homogenized tissues with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), the samples were injected into the HPLC system. The NBD-derivatized ADMA was trapped on a cation-exchange column and separated within 15 min on a monolithic silica column. The detection limit for ADMA was 36 nM (250 fmol per injection) when the signal-to-noise ratio was 3. A good linearity for calibration curve for ADMA was observed within the range of 140 nM (1.0 pmol per injection) - 140 microM (1.0 nmol per injection) using N(G)-monomethyl-L-arginine (L-NMMA) as an internal standard. The proposed method was used for the quantitative determination of ADMA in rat plasma. The concentrations of ADMA in rat plasma were 0.82+/-0.05 microM (n=4). Furthermore, the method developed was applied to determine dimethylarginine dimethylaminohydrolase (DDAH) enzyme activity in rat kidney, which was assayed by measuring the amount of ADMA metabolized by the enzyme.  相似文献   

8.
Hydroxy and hydroperoxy fatty acids were labeled with 9-bromomethylacridine at room temperature. They were separated from the degradation products and less polar fatty acid derivatives on an octyl silicagel column, and put on an octadecyl silicagel column by on-line column switching. By this method, picomolar levels of the derivatives were measured with good reproducibility. The detection limit of 16-hydroxy-hexadecanoic acid as a representative was 0.9 pmol (S/N =3) and the relative standard deviation of its peak areas was 2.5% (18.5 pmol, n = 7). The method was used for the measurement of hydroxy fatty acids derived from hydroperoxy fatty acids and phosphatidylcholine (PC) hydroperoxides spiked in human plasma. By incubation at 37°C for 4h with human plasma, the hydroperoxy fatty acid was reduced to the corresponding hydroxy fatty acid. In this condition, the PC hydroperoxides showed a considerable decrease, however, a small portion (2.5–3%) of PC hydroperoxides decomposed gave the corresponding hydroxy fatty acids.  相似文献   

9.
A sensitive and selective high performance liquid chromatographic method using an automated column switching technique for the determination of FCE 28833 enantiomers in gerbil plasma was developed. After solid-liquid extraction using a Supelcosil C18 cartridge FCE 28833 was eluted on a clean-up column (Spherisorb CN) and the enantiomers were separated using an analytical chiral column (Crownpack CR(+)). The mobile phase (15% methanol in HClO4 1 mM) was directed through the columns at a flow rate of 1 ml/min and the fraction eluted between 13 and 40 min was transferred from the clean-up column into the analytical column. FCE 28833 enantiomers were monitored at 257 nm. The limit of quantitation of the method was 20 ng/ml plasma for both enantiomers and proved to be linear, precise, and accurate for the assay of both enantiomers in the 20–6,000 ng/ml concentration range. No interference from the blank gerbil plasma sample was observed. The suitability of the method was assessed using plasma samples obtained from male gerbils treated with a single oral dose (400 mg/kg) of FCE 28833. Chirality 9:133–138, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
A simple, sensitive and reproducible method was developed for the determination of lamotrigine in whole blood with on-line solid phase extraction followed by HPLC separation with UV detection. Whole blood samples were diluted 1:1 with water and then injected directly on a clean-up column dry-packed with 40microm C8 silica and separated on a C18 reversed-phase column (150x4.6mm) at room temperature. The extraction column was activated with methanol and conditioned with phosphate buffer of pH 4.5. Mobile phases consisted of phosphate buffer of pH 4.5 for the extraction column and of phosphate buffer of pH 4.5 - acetonitrile (60:40, v/v) for the analytical column. At a flow rate of 1.0ml/min and a connection time of 1.0min, the complete cycle time was 10.0min. Detection was carried out at 260nm. No internal standard was necessary. The method was linear over concentration range 0.2-20.0microg/ml for lamotrigine. Recovery was 98%. Within-day and between-day coefficients of variation ranged from 1.8 to 6.7%.  相似文献   

11.
K P Chepnik  B M Waite 《Teratology》1975,11(3):247-255
Pregnant Long-Evans rats were subjected to a teratogenic regimen, i.e., were fed a synthetic diet lacking folic acid and containing 9-methylpteroylglutamic acid on the 11th to 14th days of gestation. Experimental and control pregnant rats injected with 10 muCi of [2-14C] ethanolamine on the 14th day were killed 1 or 2 days later. The total radioactivity and radioactivities of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and lysophosphatidylethanolamine (LPE) were determined in chloroform extracts of homogenates and subcellular fractions prepared from hemochorionic and yolk sac placentas and maternal liver. The distribution of radioisotope into PC and PE of control and experimental yolk sac placentas was similar, and paralleled the distribution in maternal liver. However, the distribution of radioisotope into PC and PE of the hemochorionic placentas did not parallel that of the maternal liver, and radiolabeled PC accumulated faster in experimental placentas than in controls. We suggest that the ability of the hemochorionic placenta to synthesize PC from PE was impaired by the teratogenic regimen, and that the organ took up relatively more PC from the maternal plasma. We propose that this teratogen-induced shift from placental lecithin synthesis to selective lecithin uptake underlies the previous finding of an increased accumulation of radio-labeled PC in embryos from pregnant females subjected to this teratogenic regimen (Chepenik and Waite, '73).  相似文献   

12.
A column switching high performance liquid chromatographic method with estimable sensitivity and accuracy was developed for the determination of cetirizine and ambroxol in human plasma using nebivolol as the internal standard. Plasma samples were prepared by liquid-liquid extraction in methylene chloride and a mixture of diethylether (80:20, v/v). The extracted samples were injected into a multifunctional clean-up column Supelcosil LCABZ (50 mm × 4.6 mm, 5 μm particle size) using mobile phase 1 comprising acetonitrile-phosphate buffer (pH 3.5; 20 mM) (20:80, v/v). The eluate of cetirizine and ambroxol were separated to an analytical Kromasil C(8) micro bore column (50 mm × 0.3 mm, 5 μm particle size) via a column switching device. A Kromasil C(18) analytical column (250 mm × 2.1 mm, 5 μm particle size) was used as a separation column. Mobile phase 2 consisting acetonitrile-triethylamine (0.5%) in phosphate buffer (pH 3.5; 20mM) (55:45, v/v) was used for the compound elution. The eluents were detected at 230 nm with photodiode array detector. An aliquot of 150 μl of plasma sample was introduced into the pretreatment column via the auto sampler using mobile phase 1 at a flow rate of 0.5 ml/min, column switching valve being positioned at A. The pretreatment column retained cetirizine, ambroxol and nebivolol (IS) in the column leaving the residual proteins of plasma eluted in void volume and drained out. The switching valve was shifted to position B at 7.5 min. Cetirizine, ambroxol and IS were eluted from the pretreatment column between 7. 5 and 11.5 min and introduced to the concentration column. Finally, cetirizine, ambroxol and IS were introduced to the separation column by switching valve using mobile phase 2 at a flow rate of 0.4 ml/min. During the analysis the pretreatment column was washed for the next analysis and resume to the position A. The total run time was 25 min for a sample. The procedure was repeated for urine analysis also. The method was linear from 2 to 450 ng/ml and 7-300 ng/ml for cetirizine and ambroxol respectively in plasma and 1-500 ng/ml and 5-400 ng/ml, respectively for cetirizine and ambroxol in urine. Intra-day and inter-day precision of cetirizine and ambroxol was below 15% in terms of coefficient of variation and accuracy of cetirizine and ambroxol was ranged from 94 to 101.6% and 91.1 to 100.2%, respectively. The method demonstrated high sensitivity and selectivity and therefore, applied to evaluate pharmacokinetics of cetirizine and ambroxol in healthy human volunteer after a single oral administration. Urine samples obtained from healthy human volunteers and clinical subjects with renal impairment have also been analyzed by the method to compare the elimination pattern. The method was precise and accurate for the estimation of cetirizine and ambroxol both in blood and in urine.  相似文献   

13.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the hypoglycemic agent metformin is described. Acidified samples of plasma were deproteinated with acetonitrile, washed with dichloromethane and the resulting supernatant injected. Chromatography was performed at 40°C by pumping a mobile phase of acetonitrile (250 ml) in pH 7, 0.03 M diammonium hydrogen phosphate buffer (750 ml) at a flow-rate of 1 ml/min through a silica column. Metformin and the internal standard (atenolol) were detected at 240 nm and were eluted 7.8 and 6.8 min, respectively, after injection. No endogenous substances were found to interfere. Calibration curves were linear (r>0.999) from 10 to 2000 ng/ml. The absolute recovery of both metformin and atenolol was greater than 76%. The detection limit and limit of quantitation were 2.5 and 10 ng/ml, respectively. The intra- and inter-day precision (C.V.) was 12%, or less, and the accuracy was within 6.2% of the nominal concentration. This method is suitable for clinical investigation and monitoring metformin concentration.  相似文献   

14.
A method was developed for the simultaneous determination of phosphatidylcholine hydroperoxides (PCOOH) and cholesteryl ester hydroperoxides (CEOOH). Lipid hydroperoxides (LOOH) were quantitatively extracted from human plasma with a mixture of n-hexane and ethyl acetate, and separated by column-switching high-performance liquid chromatography using one aminopropyl column and two octyl columns followed by chemiluminescence detection. LOOHs could be completely separated from each other and detected at picomole levels. The results of method validation tests were satisfactory. This method was then applied to determine LOOH in normal human plasma; the levels of PCOOH and CEOOH found were 36.0±4.0 nM (mean±S.D., n=6) and 12.3±3.1 nM (mean±S.D., n=6), respectively.  相似文献   

15.
Current methods of quantitation of histamine and its major metabolite N tau-methylhistamine are inaccurate and insensitive to the very low concentrations that exist in plasma samples. Therefore, an accurate and sensitive method for quantification in plasma has been developed using the stable isotope dilution assay with negative ion-chemical ionization mass spectrometry. For histamine, after the addition of [2H4]histamine to 2 ml of plasma, the plasma sample is deproteinized, extracted into butanol, back extracted into HCl, derivatized to the pentafluorobenzyl derivative (CH2C6F5)3-histamine, purified on silica gel columns, and then quantified with negative ion-chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions m/z 430/434. For N tau-methylhistamine, after the addition of N tau-[2H3]methylhistamine to 2 ml of plasma, the plasma sample is deproteinized, extracted into butanol, back extracted into HCl, derivatized to the heptafluorobutyryl derivative (C3F7CO2)2-N tau-methylhistamine, purified on silica gel columns, and then quantified with negative ion-chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions m/z 497/500. The precision of the histamine assay is 3.1% and the accuracy is 95.5 +/- 2.5% while the precision of the N tau-methylhistamine assay is 1.9% and the accuracy is 106.8 +/- 1.9%. The lower limits of sensitivity are 1 pg for histamine and 6 pg for N tau-methylhistamine injected on column. Using the assay in three normal human volunteers, plasma concentrations of histamine were 130, 92, and 85 pg/ml, and of N tau-methylhistamine were 229, 228, and 216 pg/ml. This assay provides a very sensitive and accurate method of quantitation of histamine and N tau-methylhistamine in plasma samples.  相似文献   

16.
A fluorescent reagent, N-(9-acridinyl)maleimide (NAM), was used for the determination of thiols in biological samples by high performance liquid chromatography. NAM-labeled glutathione (GSH), homocysteine, coenzyme A (CoA) and cysteine (CySH) were separated on a reversed-phase partition (octadecylsililated silica gel) column with the elution conditions of 0.06 m borate buffer pH 8.8: methanol (13: 1) at a flow rate of 0.6 ml/min within 15 min. In the absence of CoA in the sample, the elution conditions of 0.1 m borate buffer pH 8.8: methanol (15: 1) at a flow rate of 0.8 ml/min was used for the separations. Calibration curves were held up to 2.5 pmol for GSH and 11 pmol for CySH. About 0.17 µl of rat blood and 0.03 mg of rat liver equivalent to 0.1 nmol of GSH were determined. The sensitivity was 100 times higher than that obtained with an automatic amino acid analyzer.  相似文献   

17.
A fully automated technique for high-performance liquid chromatographic analysis of whole blood and plasma is described. Samples are automatically injected into a dialyser where proteins and blood cells are removed. The dialysates are concentrated on a small column prior to analysis. This technique is used for the determination of oxytetracycline in whole blood and plasma. After dialysis oxytetracycline and the internal standard, tetracycline, are retained on a polystyrene enrichment column and subsequently separated on a polystyrene analytical column by ion-pair chromatography. Using ultraviolet detection 50 ng/ml can be detected. Validation showed good within-day and between-day accuracy and precision. Different oxytetracycline concentrations were found in plasma and whole blood. This difference varied between the species.  相似文献   

18.
A simple and sensitive column-switching HPLC method was developed for the simultaneous determination of two furocoumarin compounds, byak-angelicin and oxypeucedanin hydrate, which are the main components of hot water extract of Angelica dahurica root (AE), in rat plasma. Plasma sample was simply deproteinated with perchloric acid. After centrifugation, the supernatant was injected into a column-switching HPLC system consisting of a clean-up column (Symmetry Shield RP 8, 20×3.9 mm I.D.) and analytical column (Symmetry C18, 75×4.6 mm I.D.) which were connected with a six-port switching valve. The flow-rate of the mobile phase (acetonitrile–water, 20:80) was maintained at 1 ml/min. Detection was carried out at wavelength 260 nm with a UV detector. The column temperature was maintained at 40°C. The calibration curves of byak-angelicin and oxypeucedanin hydrate were linear over the ranges 19.6 to 980 ng/ml (r2>0.997). The accuracy of these analytes was less than 4.4%. The intra- and inter-day relative standard deviations of byak-angelicin and oxypeucedanin hydrate were within 12.0% and 12.7%, respectively. The present method was applied for the analysis of plasma concentration from rats after administration of AE.  相似文献   

19.
A quantitative high performance liquid chromatography method for the analysis of neutral glycosylceramides as their perbenzoyl derivatives has been devised. Samples containing more than 2.5 nmol each of mono-, di-, tri-, and tetraglycosylceramide are benzoylated with 10% benzoyl chloride in pyridine at 37degrees C for 16 hr. The products are separated from excess reagents by solvent distribution and injected onto a pellicllar silica gel (Zipax) column (2.1 mm X 50 cm). The derivatives are eluted with a 10 min linear gradient of 2-17% ethyl acetate in hexane at 2 ml/min and absorbance at 280 nm is recorded. The detector response was proportional to the weight of sample used (2-30 nmol) and the lower limit of detection was about 70 pmol. The procedure has been applied to the quantitative analysis of erythrocyte and plasma glycolipids. As little as 0.5 ml of plasma can be used for analysis. The relative standard deviation of repetitive analyses ranged between 2.0% for glucosylceramide to 5.4% for galactosyllactosylceramide.  相似文献   

20.
Methenamine (hexamethylenetetramine), a urinary disinfectant, was determined in human plasma and urine by gas—liquid chromatography with a short (10 m) open-bone glass capillary column (split ratio 1:20) and nitrogen-selective detector. An almost quantitative recovery (92.1%) was achieved by simple dilution of water-containing samples (0.5 ml) with acetone (4.5 ml). After centrifugation and aliquot (2 μl) of the supernatant was injected into the gas chromatograph. Selectivity and sensitivity of the nitrogen detector allowed the quantitation of unchanged methenamine in plasma and urine up to 24 h after a single therapeutic dose of 1 g.Reproducibility of the method was 7.6 and 2.1% (C.V.) in serum and urine, respectively. The time required for the analysis of one sample was approx. 2 min. Due to the simple extraction and short analysis time it was possible to analyze the samples concurrently with sample taking. Absorption of standard tablets and an enterosoluble preparation of methenamine hippurate was compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号