首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sample introduction of an imaged capillary isoelectric focusing (cIEF) instrument is fully automated by using commercially available high-performance liquid chromatography (HPLC) injection valves and autosamplers. Sample carryover can be controlled to under 1% when the valve and separation column are washed for 1 min between sample runs. The standard deviation of peak areas for 20 injections is 3.5%, which includes deviations created by the absorption imaging detector and the isoelectric focusing process inside the 75 μm I.D. column. Sample throughput is up to 10 samples per hour. The instrument has been applied to fast analysis of many proteins including monoclonal antibodies.  相似文献   

2.
Methods using automated capillary electrophoresis (CE) instrumentation are available for serum protein electrophoresis with monoclonal band quantitation, isoelectric focusing and sodium dodecyl sulphate-polyacrylamide gel electrophoresis separations. The advantages of CE over previous gel methods relate to the time and labour saved by the automated instrumentation. High pI monoclonal bands and cryoglobulin specimens can be successfully analysed by CE. However, if the CE application uses a standard company supplied kit, then the cost savings are often negated by the high cost of the kit. Improvements such as the inclusion of both a UV-Vis as well as a fluorescence detector as standard within the one commercial instrument, the production of coated IEF capillaries with a useful life of at least 100 samples, and the introduction of a capillary array into all commercial instrumentation would ensure greater use of CE within both the clinical and other protein laboratories.  相似文献   

3.
Demonstrated in this study is that without pretreatment and preconcentration nanomolar-level catecholamines in human urine samples can be quantitatively determined with ease by utilizing capillary electrophoresis coupled with amperometric detection. The detector employs a parallel-opposed dual-electrode scheme assembled with an on-capillary electrode and a disk electrode and takes advantage of the redox cycling of analytes between the two working electrodes to improve the limit of detection. The matrix effect of urine samples significantly decreases the detection sensitivity from that obtained in standard solutions. Therefore, calibration curves derived from standard solutions cannot be used in quantitative determination of catecholamines. Methods of standard addition and internal standard have been studied. The results suggest that isoproterenol is a good internal standard to facilitate the measurements of dopamine, epinephrine, and norepinephrine in human urine samples.  相似文献   

4.
A method for the analysis of enrofloxacin and ciprofloxacin in chicken muscle using marbofloxacin as internal standard is proposed. Clean-up and pre-concentration of the samples are effected by solid-phase extraction and determination is carried out by capillary electrophoresis using a photodiode array detector. The calibration graphs are linear for enrofloxacin and ciprofloxacin from 10 to 300 μg/kg. The method recoveries for enrofloxacin and ciprofloxacin are 74 and 54%, respectively. The limit of detection for the two compounds is lower than 25 μg/kg, which allows the detection of positive muscle samples at the required maximum residue limits.  相似文献   

5.
This paper describes microextraction and gas chromatographic analysis of diazepam from human plasma. The method was based on immobilisation of 1.5 μl of 1-octanol on a polyacrylate-coated fiber designed for solid-phase microextraction. The solvent-modified fibre was used to extract diazepam from the samples. The plasma sample was pre-treated to release diazepam from the protein binding. The fibre was inserted into the modified plasma sample, adjusted to pH 5.5, an internal standard was added and the mixture was carefully stirred for 4 min. The fibre with the immobilised solvent and the enriched analytes was injected into the capillary gas chromatograph. The solvent and the extracted analytes were evaporated at 300°C in the split-splitless injection port of the gas chromatograph, separated on a methylsilicon capillary column and detected with a nitrogen-phosphorus detector. The method was shown to be reproducible with a detection limit of 0.10 nmol/ml in human plasma.  相似文献   

6.
A highly sensitive analytical method based on capillary zone electrophoresis (CZE) coupled with a laser-induced fluorescence (LIF) detector was explored for the analysis of [ -Pen2,5]enkephalin (DPDPE) in rat serum. DPDPE and the internal standard Phe-Leu-Glu-Glu-Ile (P9396) were extracted from serum samples with C18 solid-phase extraction disk cartridges, followed by derivatization with tetramethylrhodamine-5-isothiocyanate (TRITC) isomer G before introduction onto the capillary column. Complete resolution of DPDPE and the internal standard from other serum components was achieved within 20 min on a 140 cm×50 μm I.D. capillary column with borate buffer (25 mM, pH 8.3). With the current method, it is possible to detect 1.3E-18 mol of DPDPE on column. The results suggest that CZE-LIF is a promising method for the sensitive and specific quantitation of therapeutic peptides in biological matrices.  相似文献   

7.
生物分析是生命科学研究中的重要环节,分析仪器的小型化是提高生物分析灵敏度、速度、通量和降低成本的有效途径之一.微流控技术能够方便地操纵微量样品,具有集成度高、样品耗量小、污染少等诸多其他常量流控技术难以具备的优点,适用于进行多通道样品处理和高通量分析.除广泛采用的光学和电化学检测手段外,质谱也被用作这些微流控器件的检测器,并逐渐形成了微流控器件-质谱联用技术专门研究领域,进一步促进了自动化程度好、灵敏度高、特异性强的高通量生物分析方法的迅速发展.在大量调研国内外文献的基础上,对微流控器件-质谱联用领域的研究背景和现状进行了综述,不但介绍了微流控器件的制造技术还着重介绍了微流控器件-质谱联用技术在蛋白质组学等生物质谱分析方面的应用和新近进展,评述了可能的发展趋势.  相似文献   

8.
Mao Y  Li Y  Zhang X 《Proteomics》2006,6(2):420-426
Based on array CIEF (ACIEF) and a novel whole column imaging detection (WCID), a comprehensive 2-D system with laser-induced fluorescence was developed for protein mapping. By coupling capillary RPLC (CRPLC) as the first dimension and ACIEF as the second dimension, a high-throughput and high-resolution proteomic expression profiling was obtained. An array of up to 60 capillaries was assembled, with electrical connections made through filling small breaks, created on each capillary at positions of buffer reservoirs, with a porous polymer. A whole column image system with laser-induced fluorescence (LIF) was devised. Spot excitation was performed with a laser converted to produce linear light, and a CCD camera was employed to take images of the protein fluorescence during line laser scanning of the capillary array. Quantitative detection of thousands of focusing protein bands in the capillary array was achieved. Details on the capillary array fabrication and scanning LIF detection system devices are discussed. The efficiency of this CRPLC-ACIEF-LIF-WCID system was further demonstrated using samples of soluble proteins extracted from liver cancer tissue. The overall peak capacity was estimated to be around 18 000 in an analysis time of less than 3 h. The reproducibility of consecutive runs and different columns were assessed as having an RSD of 1.5% and 2.2% in focusing positions, respectively.  相似文献   

9.
Methenamine (hexamethylenetetramine), a urinary disinfectant, was determined in human plasma and urine by gas—liquid chromatography with a short (10 m) open-bone glass capillary column (split ratio 1:20) and nitrogen-selective detector. An almost quantitative recovery (92.1%) was achieved by simple dilution of water-containing samples (0.5 ml) with acetone (4.5 ml). After centrifugation and aliquot (2 μl) of the supernatant was injected into the gas chromatograph. Selectivity and sensitivity of the nitrogen detector allowed the quantitation of unchanged methenamine in plasma and urine up to 24 h after a single therapeutic dose of 1 g.Reproducibility of the method was 7.6 and 2.1% (C.V.) in serum and urine, respectively. The time required for the analysis of one sample was approx. 2 min. Due to the simple extraction and short analysis time it was possible to analyze the samples concurrently with sample taking. Absorption of standard tablets and an enterosoluble preparation of methenamine hippurate was compared.  相似文献   

10.
This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.  相似文献   

11.
Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks.In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification.  相似文献   

12.
For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.  相似文献   

13.
The study of the metabolomics of primary metabolites using conventional chemical analyses requires a high-throughput method. Chemical derivatizations are a prerequisite for gas-chromatographic separation, and a large sample quantity is needed for liquid-chromatographic separation and nuclear magnetic resonance detection systems. Recently, we have developed a capillary electrophoresis-mass spectrometry (CE-MS) technology that can simultaneously quantify a large number of primary metabolites, using only a small quantity of samples, and without any chemical derivatizations. Parallel use of a capillary electrophoresis-diode array detector (CE-DAD) system further enables almost all water-soluble intracellular metabolites to be analyzed. We demonstrate, with rice leaves, a simple and rapid method of sample preparation for CE analysis; using this method, we have successfully measured the levels of 88 main metabolites involved in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, photorespiration, and amino acid biosynthesis.  相似文献   

14.
Determinations of pulmonary diffusing capacity for CO (DLCO) by physiological and morphometric techniques have resulted in substantially different values for both DLCO and its major components. To evaluate the differences in these methods of measurement of DLCO, measurements were made under controlled conditions on isolated perfused dog lungs. Multiple gas-rebreathing techniques were used to measure DLCO, the membrane component of the diffusing capacity for CO (DmCO), and pulmonary capillary blood volume (Vc) in both anesthetized dogs and after isolation and perfusion of their lungs. The isolated perfused lungs were than perfusion fixed for morphometric analysis of the components of DLCO. The values obtained morphometrically for Vc were similar to those measured by physiological techniques. Perfusion fixation did not substantially alter the morphometric estimate of DmCO when compared with previous values obtained on inflation fixed lungs. However, the morphometric estimate of DmCO was over 10 times higher than that estimated physiologically. Analysis of the potential errors in the techniques suggests that the correct value for DmCO is substantially higher than that commonly estimated by use of physiological techniques and that the explanation for the difference is due to a number of factors that can influence the binding of CO to hemoglobin under in vivo conditions. The net effect of these factors can be represented by an unknown in each component of the Roughton-Forster relationship so that 1/DL = 1/(U1.Dm) + 1/(U2.theta Vc), where theta is the binding rate for CO to hemoglobin. Because the magnitudes of the unknown terms (U1 and U2) in the Roughton-Forster relationship are likely to be large, this relationship cannot be reliably used to determine Dm and Vc.  相似文献   

15.
Practical DNA sequencing in a rugged capillary array electrophoresis system coupled directly to 96-well microtiter plates is demonstrated. A CCD detector was used to monitor all capillaries simultaneously with laser-induced fluorescence at 1.75 frames per second. The reconstructed electropherograms show good signal-to-noise ratios and resolution for the entire capillary array. The system used standard dye labeling and image splitting to obtain fluorescence intensities in two wavelength regions to allow calling up to 410 bases for the DNA sequence. The use of a replaceable poly(ethylene oxide) matrix and a protective poly(vinylpyrrolidone) coating allows high separation speed and short turnaround time for high throughput DNA sequencing. Critical evaluation of the system performance over repeated runs with base calling is presented.  相似文献   

16.
Various capillary electrophoresis applications have increasingly been utilized in mutation detection. Separation of two species is either based on secondary structure or differences in melting of DNA due to the mutation. Detection of the mutant is based on its mobility difference in the sieving matrix. We have adapted a regular 96-capillary sequencing instrument, the MegaBACE 1000, for mutation detection based on thermodynamic stability and mobility shift during electrophoresis. Denaturation of the lower melting domain of the DNA was achieved with a gradually decreasing temperature gradient in combination with a chemical denaturant. Samples were analyzed for mutants in exon 8 of the TP53 genefrom tumor samples and controls. Genomic DNA was PCR-amplified with one fluorescein labeled primer and one GC-clamped primer, diluted in water, and analyzed by temperature gradient 96-capillary array electrophoresis. Tumor samples and PCR reconstruction experiment samples were resolved by capillary gel electrophoresis under appropriate temperature gradient denaturing conditions. Ninety-six samples were analyzed in one run, with an analysis time of 30 min and a sensitivity to detect mutated alleles in wild-type background down to 0.4%. The technique proved to be robust, in that the gradient compensatesfor temperature differences within the capillary chamber; thus, each capillary will pass through the optimal separating conditions around the theoretical melting temperature for TP53 exon 8, separating homoduplexes and heteroduplexes. This technique is applicable to any sequence previously analyzed by DNA melting gel techniques or sequences harboring iso-melting domains of 100-120 bp.  相似文献   

17.
A sensitive gas-chromatographic method for quantitative analysis of verapamil in human plasma is described. The method involves a single extraction procedure, followed by separation on a capillary column and detection with a nitrogen-phosphorus detector. The detection limit, based upon an assayed plasma volume of 0.5 ml, is 2 ng/ml. The standard curve is linear in the concentration range of 2 to 1000 ng/ml. The recovery of verapamil by pentane-isopropanol extraction was found to be 95%. Zipeprol is used as the internal standard. No interference from drugs needed for the associated cancer therapy has been found. Serum verapamil concentrations are determined by this method in fourteen cancer patients undergoing treatment with adriamycin.  相似文献   

18.
Phospholipid fatty acids (PLFAs) are key components of microbial cell membranes. The analysis of PLFAs extracted from soils can provide information about the overall structure of terrestrial microbial communities. PLFA profiling has been extensively used in a range of ecosystems as a biological index of overall soil quality, and as a quantitative indicator of soil response to land management and other environmental stressors.The standard method presented here outlines four key steps: 1. lipid extraction from soil samples with a single-phase chloroform mixture, 2. fractionation using solid phase extraction columns to isolate phospholipids from other extracted lipids, 3. methanolysis of phospholipids to produce fatty acid methyl esters (FAMEs), and 4. FAME analysis by capillary gas chromatography using a flame ionization detector (GC-FID). Two standards are used, including 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (PC(19:0/19:0)) to assess the overall recovery of the extraction method, and methyl decanoate (MeC10:0) as an internal standard (ISTD) for the GC analysis.  相似文献   

19.
A novel scheme based on multiplexed capillary electrophoresis (CE) has been developed for high-throughput, low-cost and comprehensive peptide mapping. Orthogonal peptide maps of the protein of interest were obtained by using multiple reaction conditions with three different enzymes (trypsin, pepsin, and chymotrypsin), and multiple separation conditions with six zone electrophoresis buffers and two micellar electrokinetic chromatography (MEKC) buffers. Fifteen nanoliters of two protein samples (beta-lactoglobulin A and beta-lactoglobulin B) were separately mixed on-column and digested independently at 37 degrees C for 10 min to produce peptides in a 20-capillary system. The resulting peptides were detected simultaneously at 214 nm by a photodiode array detector. The overall analysis time from reaction to detection was about 40 min.  相似文献   

20.
Fourier‐transform infrared (FT‐IR) spectroscopy combined with microscopy enables chemical information to be acquired from native plant cell walls with high spatial resolution. Combined with a 64 × 64 focal plane array (FPA) detector, 4096 spectra can be simultaneously obtained from a 0.3 × 0.3 mm image; each spectrum represents a compositional and structural ‘fingerprint’ of all cell wall components. For optimal use and analysis of such a large amount of information, multivariate approaches are preferred. Here, FT‐IR microspectroscopy with FPA detection is combined with orthogonal projections to latent structures discriminant analysis (OPLS‐DA). This allows for: (i) the extraction of spectra from single cell types, (ii) identification and characterization of different chemotypes using the full spectral information, and (iii) further visualization of the pattern of identified chemotypes by multivariate imaging. As proof of concept, the chemotypes of Populus tremula xylem cell types are described. The approach revealed unknown features about chemical plasticity and patterns of lignin composition in wood fibers that would have remained hidden in the dataset with traditional data analysis. The applicability of the method to Arabidopsis xylem and its usefulness in mutant chemotyping is also demonstrated. The methodological approach is not limited to xylem tissues but can be applied to any plant organ/tissue also using other techniques such as Raman and UV microspectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号