首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2,4,5-tris(2-pyridyl)imidazole ( L ) molecule has been evaluated as a probe for dual sensing of Hg2+ and Cu2+ ions in EtOH/HEPES buffer medium (5 mM, pH = 7.34, 1:1, v/v). Probe L shows a good sensitive and selective turn-off response in the presence of both Hg2+ and Cu2+ ions, which is comprehensible under long UV light. The probe can detect Cu2+ ion in the pH range 3–11 and Hg2+ ion in pH 6–8. The limit of detection for Cu2+ (0.77 μM) is well under the allowable limit prescribed by the United States Environmental Protection Agency. Two metal (Cu2+/Hg2+) ions are needed per L for complete fluorescence quenching. The probe shows marked reversibility on treatment with Na2EDTA, making the protocol more economical for practical purposes. Paper strip coated with the L solution of EtOH can detect the presence of Cu2+ and Hg2+ ions in the sample using visible quenching of the fluorescence intensity. Density functional theory–time-dependent density functional theory (DFT–TDDFT) calculations support experimental observations, and d-orbitals of Cu2+/Hg2+ provide a nonradiative decay pathway. Cell imaging study using HDF and MDA-MB-231 cells also supported the viability of L in detecting Cu2+ and Hg2+ ions in living cells.  相似文献   

2.
In this paper, based on the fluorescence of carbon quantum dots (CQDs) quenched by mercury ions (Hg2+) and the nonresponse of Hg2+ to rhodamine B fluorescence, a dual emission ratio fluorescence sensor was constructed to realize the quantitative detection of Hg2+. Under excitation at 365 nm, the fluorescence spectrum showed double emission peaks at 437 nm and 590 nm, corresponding to the fluorescence emissions of CQDs and rhodamine B, respectively. This method quantitatively detected Hg2+ based on the linear relationship between the ratio of the intensities of the two emission peaks F437/F590 and the concentration of Hg2+. The detection range was 10–70 nM, and the limit of detection (S/N = 3) was 3.3 nM. In addition, this method could also realize the qualitative and semiquantitative detection of Hg2+ according to the fluorescence colour change of the probe under ultraviolet light. After various evaluations, the method could be successfully applied to the quantitative and visual detection of Hg2+ in tap water, and demonstrated excellent selectivity, anti-interference performance, and repeatability of the method.  相似文献   

3.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

4.
The interactions between Hg2+, Ce3+, and the mixuure of Ce3+ and Hg2+, and DNA from fish intestine in vitro were investigated by using absorption spectrum and fluorescence emission spectrum. The ultraviolet absorption spectra indicated that the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ to DNA generated an obviously hypochromic effect. Meanwhile, the peak of DNA at 205.2 nm blue-shifted and at 258.2 nm red-shifted. The size of the hypochromic effect and the peak shift of DNA by metal ion treatments was Hg2+>Hg2++Ce3+>Ce3+. The fluorescence emission spectra showed that with the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ the emission peak at about 416.2 nm of DNA did not obviously change, but the intensity reduced gradually and the sequence was Hg2+>Hg2++Ce2+>Ce3+. Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ had 1.12, 0.19, and 0.41 binding sites to DNA, respectively; the fluorescence quenching of DNA caused by the metal ions all attributed to static quenching. The binding constants (K A ) of binding siees were 8.98×104 L/mol and 1.02×104 L/mol, 5.12×104 L/mol and 1.10×103 L/mol, 6.66×104 L/mol and 2.36×103 L/mol, respectively. The results showed that Ce3+ could relieve the destruction of Hg2+ on the DNA structure.  相似文献   

5.
Sodium dodecyl sulfate (SDS)-capped 1-pyrenecarboxaldehyde nanoparticles (PyalNPs) were prepared using a reprecipitation method in an aqueous medium and exhibited red-shifted aggregation-induced enhanced emission (AIEE). The dynamic light scattering (DLS) examination showed narrower particle size distribution with an average particle size of 41 nm, whereas −34.5 mV zeta potential value indicate the negative surface charge and good stability of nanoparticles (NPs) in an aqueous medium. The AIEE was seen at λmax = 473 nm in a fluorescence spectrum of a PyalNP suspension. In the presence of Cu2+ ions, the fluorescence of PyalNPs quenches very significantly, even in the presence of other metal ions like Ba2+, Ca2+, Cd2+, Co2+, Al3+, Fe2+, Hg2+, Ni2+ and Mg2+. The changes in the fluorescence lifetime of PyalNPs in the presence of Cu2+ ions suggested that the type of quenching was dynamic. The fluorescence quenching data for the NPs suspension fitted well into a typical Stern–Volmer relationship in the concentration range 1.0–25 μg/ml of Cu2+ ions. The estimated value of the correlation coefficient R2 = 0.9877 was close to 1 and showed the linear relationship between quenching data and Cu2+ ion concentration. The limit of detection (LOD) was found to be 0.94 ng/ml and is far below the tolerable intake limit value of 1.3 μg/ml accepted by the World Health Organization for Cu2+ ions in drinking water. The fluorescence quenching approach for a SDS-capped Pyal nanosuspension for copper ion quantification is of high specificity and coexisting ions were found to interfere very negligibly. The developed method was successfully applied for the estimation of copper ions in river water samples.  相似文献   

6.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A simple naphthalimide-based fluorescent probe was designed and synthesized for the determination of mercury ion (Hg2+). The probe showed a noticeable fluorescence quenching response for Hg2+. When added with Hg2+, the fluorescence intensity of the probe at 560 nm was remarkably decreased with the color changed from yellow to colorless under ultraviolet (UV) light. The probe had a notable selectivity and sensitivity for Hg2+ and displayed an excellent sensing performance when detecting Hg2+ at low concentration (19.5 nM). The binding phenomenon between the probe and Hg2+ was identified by Job's method and high-resolution mass spectrometry (HRMS). Moreover, the probe was not only utilized to identify Hg2+ in real samples with satisfactory results (92.00%–110.00%) but also was successfully used for bioimaging in cells and zebrafish. The recognition mechanism has been verified by transmission electron microscopy (TEM) for the first time. All the results showed that the probe could be used as a potent useful tool for detection of Hg2+.  相似文献   

8.
《Inorganica chimica acta》1988,146(2):233-241
Dimethylsulfoxide and aqueous solutions of mercury(II) in large excess over iodide have been investigated by X-ray scattering techniques supported by Raman spectroscopic measurements. The composition of the solutions has been selected to ensure that the cationic complex Hg2I3+ is the predominant iodide species. The structure parameters of the solvated Hg2I3+ ion have been refined by a least- squares procedure on the scattering data, using known structural parameters for the additional molecular entities present. The Hg2I3+ entity is more or less identical in DMSO and water. The HgI bond distance is 2.613(12) and 2.632(5) Å and the HgHg distance is 3.66(5) and 3.70(1) Å in DMSO and water, respectively. This yields a HgIHg angle of 89° in both solvents. The mercury(II) atom in this complex is most probably solvated in a tetrahedral fashion by three DMSO or H2O molecules. The structure of Hg2I3+ is discussed in the light of recent results for the Ag4I3+ complex in solution and relevant crystal structures.  相似文献   

9.
The influence of mercury ions (Hg2+, 10 μM) on photosynthesis was investigated in flagellates and aplanospores of Haematococcus lacustris. Hg2+ stress resulted in a fast decrease of chlorophyll fluorescence yield. This was initially caused by an increase in reversible non-photochemical quenching of chlorophyll fluorescence. During further exposure to Hg2+, an increasing contribution of pH independent non-photochemical quenching and a parallel rise in the content of the xanthophyll cycle pigment zeaxanthin was detected. An increase of the initial chlorophyll fluorescence as a final sign of Hg2+ induced adverse effects on photosynthesis supports our hypothesis that mercury ions predispose to non-reversible, “chronic” photoinhibition.  相似文献   

10.
In this paper, an innovative and facile one‐pot method for synthesizing water‐soluble and stable fluorescent Cu nanoclusters (CuNCs), in which glutathione (GSH) served as protecting ligand and ascorbic acid (AA) as reducing agent was reported. The resultant CuNCs emitted blue‐green fluorescence at 440 nm, with a quantum yield (QD) of about 3.08%. In addition, the prepared CuNCs exhibited excellent properties such as good water solubility, photostability and high stability toward high ionic strength. On the basis of the selective quenching of Hg2+ on CuNCs fluorescence, which may be the result of Hg2+ ion‐induced aggregation of the CuNCs, the CuNCs was used for the selective and sensitive determination of Hg2+ in aqueous solution. The proposed analytical strategy permitted detection of Hg2+ in a linear range of 4 × 10?8 to 6 × 10?5 M, with a detection limit of 2.2 × 10?8 M. Eventually, the practicability of this sensing approach was confirmed by its successful application to assay Hg2+ in tap water, Lotus lake water and river water samples with the quantitative spike recoveries ranging from 96.9% to 105.4%.  相似文献   

11.
The sensitive and reliable detection of Hg2+ and CN as harsh environmental contaminants are of great importance. In view of this, a novel ‘on–off–on’ fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detection of Hg2+ and CN ions in aqueous medium. NR-SiQDs were synthesized using a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with l -asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photostability and pH stability. The fluorescence emission was effectively quenched using Hg2+ (turn-off) due to the formation of a nonfluorescent stable NR-SiQDs/Hg2+ complex, whereas after the addition of cyanide ions (CN), Hg2+ ions could be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn-on) due to the formation of highly stable [Hg(CN)4]2− species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN, respectively. Finally, the NR-SiQD-based fluorescence probe was utilized to detect Hg2+ and CN ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.  相似文献   

12.
In this study, we demonstrated a highly sensitive, selective, and reversible chemosensor for Hg2+ determination. This chemosensor was synthesized by direct condensation of thymin‐1‐ylacetic acid with zinc tetraaminoporphyrin, which has a porphyrin core as the fluorophore and four thymine (T) moieties as the specific interaction sites for Hg2+. The probe (4T‐ZnP) exhibited split Soret bands with a small peak at 408 nm and a strong band at 429 nm in a dimethylformamide/H2O (7/3, v/v) mixed solvent as well as a strong emission band at 614 nm. Upon the addition of Hg2+, the probe displayed strong fluorescence quenching due to the formation of T‐Hg2+‐T complexes. With the aid of the fluorescence spectrometer, the chemosensor in the dimethylformamide/H2O (7/3, v/v) mixed solvent (0.3 μM) exhibited a detection limit of 6.7 nM. Interferences from other common cations, such as Co2+, K+, Sn2+, Zn2+, Cu2+, Ni2+, Mn2+, Na+, Ca2+, Mg2+, Pb2+, and Cd2+, associated with Hg2+ analysis were effectively inhibited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A water‐soluble, high‐output fluorescent sensor, based on a lumazine ligand with a thiophene substituent for Cd2+, Hg2+ and Ag+ metal ions, is reported. The sensor displays fluorescence enhancement upon Cd2+ binding (log  β = 2.79 ± 0.08) and fluorescence quenching by chelating with Ag+ and Hg2+ (log β = 4.31 ± 0.15 and 5.42 ± 0.1, respectively). The mechanism of quenching is static and occurs by formation of a ground‐state non‐fluorescent complex followed by rapid intersystem crossing. The value of the Stern–Volmer quenching rate constant (kq) by Ag+ ions is close to 6.71 × 1012 mol/L/s at 298 K. The thermodynamic parameters (ΔG, ΔH and ΔS) were also evaluated and indicated that the complexation process is spontaneous, exothermic and entropically favourable. The quantitative linear relationship between the softness values of Klopman (σK) or Ahrland (σA) and the experimental binding constants (β) being in the order of Hg2+ > Ag+ > Cd2+ suggests that soft–soft interactions are the key for the observed sensitivity and selectivity in the presence of other metal ions, such as: Pb2+, Ni2+, Mn2+, Cu2+, Co2+, Zn2+ and Mg2+ ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Herring sperm DNA (hsDNA) was used to modify 10 nm nanogold to obtain a resonance scattering (RS) probe (AuhsDNA) for detection of Hg2+. In the presence of salt, Hg2+ interacts with AuhsDNA to form stable Hg2+–hsDNA complexes, and releases nanogold particles to form larger nanogold clusters that can be removed by membrane filtration. The excess AuhsDNA in the filtrate solution exhibits a catalytic effect on the reaction between hydroxylamine (NH2OH) and Cu(II). The excess AuhsDNA decreased with the addition of Hg2+, which led the RS intensity at 602 nm to decrease. The decreased RS intensity (Δl602 nm) had a linear response to Hg2+ concentration in the range of 0.4–400 nM, with a detection limit of 0.2 nM Hg2+. This RS method was applied for the detection of Hg2+ in water samples, with sensitivity, selectivity and simplicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A fluorescence and absorption chemosensor (SAAT) based on 5-(hydroxymethyl)-salicylaldehyde (SA) and o-aminothiophenol (AT) was designed and synthesized. SAAT in DMSO–HEPES (20.0 mM, v/v, 1:99, pH = 7.0) solution shows a highly selective and sensitive absorption and an ‘on–off’ fluorescence response to Cu2+ ions in aqueous solutions over all other competitive metal ions including Na+, Ag+, Ba2+, Ca2+, Cd2+, Mg2+, Zn2+, Cr3+, Al3+, Hg2+, K+, Mn2+, Ni2+, Sr2+, Tb3+ and Co2+. SAAT exhibits ratiometric absorption sensing ability for Cu2+ ions. Importantly, SAAT also can sense Cu2+ ions using fluorescence quenching, the fluorescence intensity of SAAT showed a good linear relationship with Cu2+ concentration, and the detection limit of Cu2+ was 0.34 μM. The results of Job's plot, Benesi–Hildebrand plot, mass spectra, and density functional theory calculations confirmed that the selective absorption and fluorescence response were attributed to the formation of a 1:1 complex between SAAT and Cu2+. SAAT in test film could identify Cu2+ in water samples using the intuitive fluorescence colour change under a UV lamp. SAAT has great application value as a selective and sensitive chemosensor to discriminate and detect Cu2+ ions.  相似文献   

16.
Given how crucial it is to preserve a human-safe and sustainable environment, the rapid discovery of possibly lethal heavy metals such as Hg(II) has drawn much attention in recent years. A novel sensor, known as (E)-2-((10-octyl-10H-phenothiazin-3-yl)methylene)hydrazine-1-carbothioamide (PTZHC), was synthesized as a fluorescence ‘on–off’ sensor for Hg2+ ions. Coordination alters organic molecule electron densities, quenching the fluorescence intensity. PTZHC was described completely with the help of FTIR and 1H-NMR spectrum studies. The Hg2+ ion was successfully detected using the PTZHC sensor even when there were other metal ions present. The limit of the detection was estimated to be 2.5 × 10−8 M and the Job's plot examination implied that PTZHC was bound to Hg2+ with a simple 1:1 stoichiometry in s CH3CN/H2O (9:1, v/v) suspension. To further cast light on the bridged effect on geometric and optoelectronic characteristics, time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d) level and DFT were both examined.  相似文献   

17.
Thiophene‐based diimine (R1) and monoimine (R2) were synthesized in a single step, and their cation binding affinity was tested using colorimetric and UV–vis spectral studies. R1 selectively shows a colorimetric turn‐on response for Pb2+, Hg2+ ions and colorimetric turn‐off with Sn2+ ions, and R2 shows visual response for Cu2+ and Hg2+ over other examined metal ions in aqueous medium. R1 forms 1:1 complex with Pb2+, Hg2+, and Sn2+ and exhibits fluorescence quenching, whereas R2 shows 2:1 complex with Hg2+, Cu2+ and shows fluorescence enhancement. The structural and electronic properties of the sensors and their metal complexes were also investigated using Density Functional Theory calculations. R2 was also successfully demonstrated as a fluorescent probe for detecting Cu2+ ions in living cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Mercury (Hg) is one of the heavy metal pollutants in the environment. Even a very small amount of mercury can cause serious harm to human beings. Herein, we reported a new carbonothioate‐based fluorescent probe for the detection of Hg2+ without interference from other metal ions. This probe possessed a very large Stokes shift (192 nm), which could improve the detection sensitivity by minimizing the interferences resulted from self‐absorption or auto‐fluorescence. With the addition of Hg2+ to the probe solution, considerable fluorescence enhancement was observed. Additionally, the Hg2+ concentration of 0–16 μM and fluorescence intensity showed a good linear relationship (y = 22106× + 53108, R2 = 0.9955). Finally, the proposed probe was used to detect Hg2+ in real water samples, and its result was satisfactory. Therefore, our proposed probe would provide a promising method for the determination of Hg2+ in the environment.  相似文献   

19.
The effect of equimolar concentrations of Hg2+ and Cd2+ on the whole cell absorption spectra, absorption spectra of the extracted phycocyanin (PC) and fluorescence emission spectra of phycobilisomes (PBS) was investigated in the cells of Anabaena flos-aquae. The PC component of the PBS was found to be extremely sensitive to the Hg2+ rather than the Cd2+ ions. Further, the results showed that Hg2+ and Cd2+ induced decrease in the rate of Hill activity (H2O - DCPIP) was partially restored by the electron donor NH2OH, not by the diphenyl carbazide. Similarly, chlorophyll a fluorescence emission in the presence of metals showed that addition of NH2OH could effectively reverse the metal induced alterations in the fluorescence emission intensity. These results, together, suggested that Hg2+ and Cd2+ caused damage to the photosystems (PS) II reaction center. However, a relatively higher stimulation of the chlorophyll a emission at 695 nm with a red shift of 4.0 nm in the presence of Hg2+, and Cd2+ induced preferential decrease in the emission intensity at 676 nm as compared with the peak at 695 nm were indicative of the differential action of Hg2+ and Cd2+ on the PS II.  相似文献   

20.
A novel selective and sensitive fluorescence ‘on-off-on’ probe based on tetraphenylethylene (TPE) motif for sequential recognition of Fe3+ and Hg2+ in water has been developed. Especially the complex 6-Fe3+ could behave as a ‘turn on’ fluorescent sensor over a wide-range pH value for detection of Hg2+. The selectivity of this complex for Hg2+ over other heavy and transition metal ions is excellent, and its sensitivity for Hg2+ is at 2 ppb in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号