首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Texture mapping is an increasingly popular technique in molecular modeling. It is particularly effective in representing high-resolution surface detail using a low-resolution polygonal model. We describe how texture mapping can be used with parametric molecular surfaces represented as expansions of spherical harmonic functions. We define analytically the texture image and its transformation to a parametric surface. Unlike most methods of texture mapping, this transformation defines a one-to-one correspondence between the surface and the texture; texture coordinates are derived from the location of the surface point and not from physical properties at the surface point. This has advantates for the interactive visualization of surface data. We control the interactive response time by lowering the resolution of the polygon mesh while retaining the high-resolution detail of the texture, or we can lower the resolution of the texture image with the same polygonal model. By using a well-defined convention for texture coordinates, we can use the same image for the original surface or its parametric representation, and we can rapidly switch between images that represent different surface properties without recomputing the texture coordinates. Parametric surfaces allow new flexibility for the visualization of molecular surface data.  相似文献   

2.
An efficient new method is presented for the characterization of motional correlations derived from a set of protein structures without requiring the separation of overall and internal motion. In this method, termed isotropically distributed ensemble (IDE) analysis, each structure is represented by an ensemble of isotropically distributed replicas corresponding to the situation found in an isotropic protein solution. This leads to a covariance matrix of the cartesian atomic positions with elements proportional to the ensemble average of scalar products of the position vectors with respect to the center of mass. Diagonalization of the covariance matrix yields eigenmodes and amplitudes that describe concerted motions of atoms, including overall rotational and intramolecular dynamics. It is demonstrated that this covariance matrix naturally distinguishes between "rigid" and "mobile" parts without necessitating a priori selection of a reference structure and an atom set for the orientational alignment process. The method was applied to the analysis of a 5-ns molecular dynamics trajectory of native ubiquitin and a 40-ns trajectory of a partially folded state of ubiquitin. The results were compared with essential dynamics analysis. By taking advantage of the spherical symmetry of the IDE covariance matrix, more than a 10-fold speed up is achieved for the computation of eigenmodes and mode amplitudes. IDE analysis is particularly suitable for studying the correlated dynamics of flexible and large molecules.  相似文献   

3.
T Nishikawa  N Go 《Proteins》1987,2(4):308-329
The normal mode analysis of conformational fluctuation is carried out for a small globular protein, bovine pancreatic trypsin inhibitor. Results are analyzed mainly to reveal the mechanical construction of the protein molecule. We take dihedral angles, including peptide omega angles, as independent variables for the normal mode analysis. There are 306 such angles in this molecule. Motions in modes with frequencies lower than 120 cm-1 are shown to involve atoms in the whole protein molecule, and spatial change of displacement vectors is continuous, i.e., those of atoms near in space are similar. To quantitate the observation of the continuity, a correlation function of direction vectors of atomic displacements is calculated. From this function we define a quantity that is interpreted as the wave length of an equivalent elastic plane wave. From this quantity we deduce effective Young's modulus for each mode. For the mode with the lowest frequency 4.4 cm-1, it turned out to be 0.8 x 10(9) dyn cm-2, the value two orders of magnitude softer than, for instance, alpha-helices. Prompted by this observation, the four lowest frequency modes and also the harmonic motions in the thermal equilibrium are analyzed further mainly to detect relatively rigid structural elements in the molecule. From this analysis emerges a mechanical picture of the protein molecule that is made up of relatively rigid elements held together by very soft parts.  相似文献   

4.
The representation and characterization of molecular surfaces are important in many areas of molecular modeling. Parametric representations of protein molecular surfaces are a compact way to describe a surface, and are useful for the evaluation of surface properties such as the normal vector, principal curvatures, and principal curvature directions. Simplified representations of molecular surfaces are useful for efficient rendering and for the display of large-scale surface features. Several techniques for representing surfaces by expansions of spherical harmonic functions have been reported, but these techniques require that the radius function is single valued, that is, each ray from an origin inside the surface intersects the surface at one and only one point. A new technique is described that removes this limitation and can be used to compute surface shape properties. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Wako H  Endo S 《Biophysical chemistry》2011,159(2-3):257-266
The conformational change of a protein upon ligand binding was examined by normal mode analysis (NMA) based on an elastic-network model (ENM) for a full-atom system using dihedral angles as independent variables. Specifically, we investigated the extent to which conformational change vectors of atoms from an apo form to a holo form of a protein can be represented by a linear combination of the displacement vectors of atoms in the apo form calculated for the lowest-frequency m normal modes (m=1, 2,…, 20). In this analysis, the latter vectors were best fitted to the former ones by the least-squares method. Twenty-two paired proteins in the holo and apo forms, including three dimer pairs, were examined. The results showed that, in most cases, the conformational change vectors were reproduced well by a linear combination of the displacement vectors of a small number of low-frequency normal modes. The conformational change around an active site was reproduced as well as the entire conformational change, except for some proteins that only undergo significant conformational changes around active sites. The weighting factors for 20 normal modes optimized by the least-squares fitting characterize the conformational changes upon ligand binding for these proteins. The conformational changes sampled around the apo form of a protein by the linear combination of the displacement vectors obtained by ENM-based NMA may help solve the flexible-docking problem of a protein with another molecule because the results presented herein suggest that they have a relatively high probability of being involved in an actual conformational change.  相似文献   

6.
A comparison of a normal mode analysis and principal component analysis of a 200-ps molecular dynamics trajectory of bovine pancreatic trypsin inhibitor in vacuum has been made in order to further elucidate the harmonic and anharmonic aspects in the dynamics of proteins. An anharmonicity factor is defined which measures the degree of anharmonicity in the modes, be they principal modes or normal modes, and it is shown that the principal mode system naturally divides into anharmonic modes with peak frequencies below 80 cm?1, and harmonic modes with frequencies above this value. In general the larger the mean-square fluctuation of a principal mode, the greater the degree of anharmonicity in its motion. The anharmonic modes represent only 12% of the total number of variables, but account for 98% of the total mean-square fluctuation. The transitional nature of the anharmonic motion is demonstrated. The results strongly suggest that in a large subspace, the free energy surface, as probed by the simulation, is approximated by a multi-dimensional parabola which is just a resealed version of the parabola corresponding to the harmonic approximation to the conformational energy surface at a single minimum. After 200 ps, the resealing factor, termed the “normal mode resealing factor,” has apparently converged to a value whereby the mean-square fluctuation within the subspace is about twice that predicted by the normal mode analysis. © 1995 Wiley-Liss, Inc.  相似文献   

7.
M H Hao  S C Harvey 《Biopolymers》1992,32(10):1393-1405
This paper presents a general method for studying the harmonic dynamics of large biomolecules and molecular complexes. The performance and accuracy of the method applied to a number of molecules are also reported. The basic approach of the method is to divide a macromolecule into a number of smaller components. The local normal modes of the components are first calculated by treating individual components and the interactions between nearest neighboring components. The physical displacements of all atoms are then represented in the local normal mode space, in which a selected range of high-frequency local modes is neglected. The equation of motion of the molecule in the local normal mode space will then have a smaller dimension, and consequently the normal modes of the whole structure, particularly for large molecules, can be solved much more easily. The normal modes of two polypeptides--(Ala)6 and (Ala)12--and a double-helical DNA--d(ATATA).d(TATAT)--are analyzed with this method. Reductions on the dimensions of harmonic dynamic equations for these molecules have been made, with the fraction of the deleted high-frequency modes ranging from 1/2 to 5/6. The calculated low-frequency normal modes are found to be very accurate as compared to the exact solutions by standard procedure. The major advantage of the present approach on macromolecule harmonic dynamics is that the reduction on the dimensionality of the eigenvalue problems can be varied according to the size of molecules, so the method can be easily applied to large macromolecules with controlled accuracy.  相似文献   

8.
Normal mode analysis (NMA) has received much attention as a direct approach to extract the collective motions of macromolecules. However, the stringent requirement of computational resources by classical all-atom NMA limits the size of the macromolecules to which the method is normally applied. We implemented a novel coarse-grained normal mode approach based on partitioning the all-atom Hessian matrix into relevant and nonrelevant parts. It is interesting to note that, using classical all-atom NMA results as a reference, we found that this method generates more accurate results than do other coarse-grained approaches, including elastic network model and block normal mode approaches. Moreover, this new method is effective in incorporating the energetic contributions from the nonrelevant atoms, including surface water molecules, into the coarse-grained protein motions. The importance of such improvements is demonstrated by the effect of surface water to shift vibrational modes to higher frequencies and by an increase in overlap of the coarse-grained eigenvector space (the motion directions) with that obtained from molecular dynamics simulations of solvated protein in a water box. These results not only confirm the quality of our method but also point out the importance of incorporating surface structural water in studying protein dynamics.  相似文献   

9.
Palmer DS  Jensen F 《Proteins》2011,79(10):2778-2793
We report the development of a method to improve the sampling of protein conformational space in molecular simulations. It is shown that a principal component analysis of energy-weighted normal modes in Cartesian coordinates can be used to extract vectors suitable for describing the dynamics of protein substructures. The method can operate with either atomistic or user-defined coarse-grained models of protein structure. An implicit reverse coarse-graining allows the dynamics of all-atoms to be recovered when a coarse-grained model is used. For an external test set of four proteins, it is shown that the new method is more successful than normal mode analysis in describing the large-scale conformational changes observed on ligand binding. The method has potential applications in protein-ligand and protein-protein docking and in biasing molecular dynamics simulations.  相似文献   

10.
We carry out an extensive statistical study of the applicability of normal modes to the prediction of mobile regions in proteins. In particular, we assess the degree to which the observed motions found in a comprehensive data set of 377 nonredundant motions can be modeled by a single normal-mode vibration. We describe each motion in our data set by vectors connecting corresponding atoms in two crystallographically known conformations. We then measure the geometric overlap of these motion vectors with the displacement vectors of the lowest-frequency mode, for one of the conformations. Our study suggests that the lowest mode contains useful information about the parts of a protein that move most (i.e., have the largest amplitudes) and about the direction of this movement. Based on our findings, we developed a Web tool for motion prediction (available from http://molmovdb.org/nma) and apply it here to four representative motions--from bacteriorhodopsin, calmodulin, insulin, and T7 RNA polymerase.  相似文献   

11.
Schieborr U  Rüterjans H 《Proteins》2001,45(3):207-218
Collective internal motions are known to be important for the function of biological macromolecules. It has been discussed in the past whether the application of superimposing algorithms to remove the overall motion from a structural ensemble introduces artificial correlations between distant atoms. Here we present a new method to eliminate residual rotation and translation from cartesian modes derived from a normal mode analysis or from a principal component analysis. Bias-free separation is based on the idea that the addition of modes of pure rotation/translation can compensate the residual overall motion. Removal of overall motion must reduce the "total amount of motion" (TAM) in the mode. Our algorithm allows to back-calculate revised covariance matrices. The approach was applied to two model systems that show residual overall motion, when analyzed using all atoms as reference for the superimposing algorithm. In both cases, our algorithm was capable of eliminating residual covariances caused by the overall motion, while retaining internal covariances even for very distant atoms. A structural ensemble obtained for a 13-ns molecular dynamics simulation of the protein Ribonuclease T1 showed a covariance matrix of the corrected modes with significantly sharper contours after applying the bias-free separation.  相似文献   

12.
T Horiuchi  N Go 《Proteins》1991,10(2):106-116
A method is presented to describe the internal motions of proteins obtained from molecular dynamics or Monte Carlo simulations as motions of normal mode variables. This method calculates normal mode variables by projecting trajectories of these simulations onto the axes of normal modes and expresses the trajectories as a linear combination of normal mode variables. This method is applied to the result of the molecular dynamics and the Monte Carlo simulations of human lysozyme. The motion of the lowest frequency mode extracted from the simulations represents the hinge bending motion very faithfully. Analysis of the obtained motions of the normal mode variables provides an explanation of the anharmonic aspects of protein dynamics as due first to the anharmonicity of the actual potential energy surface near a minimum and second to trans-minimum conformational changes.  相似文献   

13.
A comparison is made between a 200-ps molecular dynamics simulation in vacuum and a normal mode analysis on the protein bovine pancreatic trypsin inhibitor (BPTI) in order to elucidate the dual aspects of harmonicity and anharmonicity in the dynamics of proteins. The molecular dynamics trajectory is analyzed using principal component analysis, an effective harmonic analysis suited for comparison with the results from the normal mode analysis. The results suggest that the first principal component shows qualitatively different behavior from higher principal components and is associated with apparent barrier crossing events on an anharmonic conformational energy surface. The higher principal components appear to have probability distributions that are well approximated by Gaussians, indicating harmonicity. Eliminating the contribution from the first principal component reveals a great deal of correspondence between the 2 methods. This correspondence, however, involves a factor of 2, as the variances of the distribution of the higher principal components are, on average, roughly twice those found from the normal mode analysis. A model is proposed to reconcile these results with those from previous analyses.  相似文献   

14.
15.
16.
A preliminary analysis is presented of whether and to what extent thermal motion of protein molecules as rigid bodies contributes to the mobility found in X-ray and M?ssbauer studies. A simple theory is advanced enabling the estimation of mean-square amplitudes of translational and librational motion of the protein molecules in crystals and amorphous glasses from the experimental data on the elastic properties of these solids. The values calculated and their dependence on the crystal packing, temperature and hydration level were found to be in good accord with the data of X-ray analysis and M?ssbauer spectroscopy. The external modes were concluded to contribute significantly to the values of mean value of chi 2 measured by the last two methods meaning that the conventional amplitudes of internal motion in proteins were overestimated. The real average amplitude of thermal motion of atoms in the protein interior should be close to that in molecular crystals, in accordance with the crystal-like packing of atoms inside the protein globule and some other "crystal-like" physical characteristics such as Young's modulus, adiabatic compressibility and thermal expansion coefficient. Factors are discussed which determine the temperature dependence of the amplitudes of external and internal modes of protein motion.  相似文献   

17.
J F Gibrat  N Go 《Proteins》1990,8(3):258-279
A normal mode analysis of human lysozyme has been carried out at room temperature. Human lysozyme is an enzyme constituted of two domains separated by an active site cleft, the motion of which is thought to be relevant for biological function. This motion has been described as a hinge bending motion. McCammon et al. have determined the characteristics of the hinge bending motion but they assumed a prior knowledge of the hinge axis. In this work we propose a method which is free from this assumption and determines the hinge axis and root mean square (rms) rotation angle which give the best agreement with the pattern of changes in all the distances between nonhydrogen atoms in the two domains, obtained by the normal mode analysis. The hinge axis we found is notably different from the one previously determined and goes, roughly, through the C alpha 55 and C alpha 76, i.e., it is located at the base of the beta-sheet of the second domain. The rms value for the rotation angle is also twice as large as the previous one: 3.37 degrees. It is shown that this hinge bending motion provides a fairly good approximation of the dynamics of human lysozyme and that the normal mode with the lowest frequency has a dominating contribution to this hinge bending motion. A study of the accessible surface area of the residues within the cleft reveals that the motion does not result in a better exposure to the solvent of these residues. A characterization of the thermally excited state (under the hypothesis of the harmonicity of the potential energy surface) has been done using the concept of topology of atom packing. Under this hypothesis the thermal fluctuations result only in a small change of the topology of atom packing, leading therefore to nearly elastic deformations of the protein.  相似文献   

18.
Vibrational spectra of proteins potentially give insight into biologically significant molecular motion and the proportions of different types of secondary structure. Vibrational spectra can be calculated either from normal modes obtained by diagonalizing the mass-weighted Hessian or from the time autocorrelation function derived from molecular dynamics trajectories. The Hessian matrix is calculated from force fields because it is not practical to calculate the Hessian from quantum mechanics for large molecules. As an alternative to molecular dynamics the spectral response can be calculated from a time autocorrelation derived from numerical solution of the harmonic equations of motion, resulting in calculations at least 4 times faster. Because the calculation also scales linearly with number of atoms, N, it is faster than normal-mode calculations that scale as N 3 for proteins with more then 4,700 atoms. Using this method it is practical to perform all-atom calculations for large biological systems, for example viral capsids, with the order of 105 atoms.  相似文献   

19.
Model-free methods are introduced to determine quantities pertaining to protein domain motions from normal mode analyses and molecular dynamics simulations. For the normal mode analysis, the methods are based on the assumption that in low frequency modes, domain motions can be well approximated by modes of motion external to the domains. To analyze the molecular dynamics trajectory, a principal component analysis tailored specifically to analyze interdomain motions is applied. A method based on the curl of the atomic displacements is described, which yields a sharp discrimination of domains, and which defines a unique interdomain screw-axis. Hinge axes are defined and classified as twist or closure axes depending on their direction. The methods have been tested on lysozyme. A remarkable correspondence was found between the first normal mode axis and the first principal mode axis, with both axes passing within 3 Å of the alpha-carbon atoms of residues 2, 39, and 56 of human lysozyme, and near the interdomain helix. The axes of the first modes are overwhelmingly closure axes. A lesser degree of correspondence is found for the second modes, but in both cases they are more twist axes than closure axes. Both analyses reveal that the interdomain connections allow only these two degrees of freedom, one more than provided by a pure mechanical hinge. Proteins 27:425–437, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The singular value decomposition (SVD) provides a method for decomposing a molecular dynamics trajectory into fundamental modes of atomic motion. The right singular vectors are projections of the protein conformations onto these modes showing the protein motion in a generalized low-dimensional basis. Statistical analysis of the right singular vectors can be used to classify discrete configurational substates in the protein. The configuration space portraits formed from the right singular vectors can also be used to visualize complex high-dimensional motion and to examine the extent of configuration space sampling by the simulation. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号