首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bioreactor system for biotoxin production was appraised against traditional methods of growing dinoflagellate cultures. In an optimised bioreactor culture (5.4?L) operated in batch mode, growth of Karenia selliformis was more efficient than in 15-L bulk carboy culture in terms of growth rate (μ?=?0.07?day?1 versus 0.05?day?1) and growth maximum (G max, 169.106 versus 41.106 cells L?1). Maximal gymnodimine concentration (1200?μg L?1) in bioreactor culture was 8-fold higher than in bulk carboy culture, and the yield per cell (pg cell?1) was 2-fold higher. Similarly the bioreactor batch culture of Alexandrium ostenfeldii performed more efficiently than carboy cultures in terms of growth rate (1.6-fold higher), growth maximum (15-fold higher) and desmethyl C spirolide (SPX-desMe-C) yield (5-fold higher [μg L?1], though the yield [pg cell?1basis] was lower). When bioreactor cultures of K. selliformis were operated in continuous mode, the yield of gymnodimine was substantially higher than a carboy or the bioreactor run in batch mode to growth max (793?μg day?1 over 58?days in continuous culture was achieved versus an average of 60?μg day?1 [carboy over 40?days] or 249?μg day?1 [batch mode] over 26?days). Likewise in continuous bioreactor cultures of A. ostenfeldii run over 25?days, the yield of SPX-desMe-C (29?μg day?1) was substantially higher than in same cultures run in batch mode or carboys (10.2 day?1 and 7.7?μg day?1 respectively). Similarly 5.4?L bioreactor batch cultures of K. brevisulcata reached 3.8-fold higher cell densities than carboy cultures, and when operated in continuous mode, the brevisulcatic acids were more efficiently produced than in batch culture (12?μg day?1 versus 7?μg day?1). When the bioreactor system was upscaled to 52?L, the maximum cell densities and toxin yields of K. brevisulcata cultures were somewhat less than those achieved in the smaller reactor, which was attributed to reduced light penetration.  相似文献   

2.
In a study of the control of metabolite formation, prodigiosin production by Serratia marcescens was used as a model. Specific production rates of prodigiosin formation were determined using batch culture technique. Sucrose as carbon source and NH4NO3 as nitrogen source resulted in a specific production rate of 0.476 mg prodigiosin (g cell dry weight)−1 h−1. Prodigiosin formation and productivity was inversely correlated to growth rate when the bacterium was grown under carbon limitation on a defined medium in a chemostat culture. The maximum specific growth rate (μmax) was 0.54 h−1 and prodigiosin was formed in amounts over 1 mg l−1 up to a growth rate (μ) of 0.3 h−1 at steady state conditions. At a dilution rate of 0.1 h−1 growth at steady state with carbon and phosphate limitation supported prodigiosin formation giving a similar specific yield [1.17 mg prodigiosin (g cell dry weight)−1 and 0.94 mg g−1, respectively], however, cells grown with nitrogen limitation [(NH4)2SO4] did not form prodigiosin. Productivity in batch culture was 1.33 mg l−1 h−1 as compared to 0.57 mg l−1 h−1 in the chemostat.  相似文献   

3.
The effects of wavelengths of light-emitting diode (LED), nitrate concentration, and salt concentration were evaluated for the two-phase culture of the microalgal species Phaeodactylum tricornutum, Dunaliella tertiolecta, and Isochrysis galbana on cell growth and lipid production. Blue LEDs produced the highest biomass of P. tricornutum at a nitrate concentration of 8 mg/L, reaching 0.97 g dcw/L with a specific growth rate (μ) of 0.047 h−1, followed by I. galbana with 0.79 g dcw/L and μ = 0.040 h−1 and D. tertiolecta with 0.55 g dcw/L and μ = 0.028 h−1. Of the three microalgae, P. tricornutum had the highest specific growth rate of μmax = 0.070 h−1 and lowest saturation constant of Ks = 4.18 mg/L, resulting in fast cell growth. The highest lipid production was obtained under green LED wavelength stress on day 14, reaching 60.6% (w/w) of the dry cell weight among the three microalgae. The main fatty acids produced by the three microalgae were myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1), and arachidic acid (C20:0), which comprised 72.68%–84.16% (w/w) of the total fatty acids content under three stresses.  相似文献   

4.
The recent increase in human diseases and cancers requires new drugs to combat them. Sources have been found in rare microorganisms, those from extreme habitats, and from endophytes. In this study, the biological activity of endophytic fungi associated with the Brazilian medicinal plant Combretum leprosum was assessed. Cytotoxic and antiproliferative effects were evaluated using seven human cancer cells lines (HeLa, ECV304, B16F10, J744, P388, Jurkat and k562). In addition the minimum inhibitory concentration (MIC) against pathogenic human fungal was determined using four Candida species and the filamentous fungi Cryptococcus neoformans and Trichophyton rubrum. A compound from extracts of phylotype Aspergillus oryzae CFE108 exhibited the most significant cytotoxicity effect against histiocytic sarcoma J774 (IC50 of 0.80 μg?mL?1), leukemia Jurkat (IC50 of 0.89 μg?mL?1), bladder carcinoma ECV304 (IC50 of 3.08 μg?mL?1) and cervical cancer HeLa (IC50 of 2.97 μg?mL?1). The extract from phylotypes Fusarium oxysporum CFE177 displayed antifungal activity and inhibited the growth of Candida glabrata (4 μg?mL?1) as well as that of C. neoformans and T. rubrum with the lowest MIC being 62.5 μg?mL?1. In addition, the fractions from A. oryzae CFE108 showed marked morphological activity (rounding up) on endothelial cells (tEnd.1 cells), which is indicative of potential antivascular activity. Our results indicate that the endophytes associated with this medicinal plant may be a source of novel drugs.  相似文献   

5.
The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ?=?0.1 h?1); slower growth was observed on succinate and acetic acid (μ?=?0.01 h?1). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ?=?0.1 h?1 on traditional mineral salt medium to μ?=?0.18 h?1 on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3?×?10?9 μg BAM h?1. Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality.  相似文献   

6.
The effects of several physiological parameters on H2 production rate in the unicellular halotolerant cyanobacterium Aphanothece halophytica were investigated. Under nitrogen deprivation, the growth of cells was inhibited, but H2 production rate was enhanced approximately fourfold. Interestingly, cells grown under sulfur deprivation exhibited a decrease in cell growth, H2 production rate, and bidirectional hydrogenase activity. Glucose was the preferred sugar source for H2 production by A. halophytica, but H2 production decreased at high glucose concentrations. H2 production rate was optimum when cells were grown in the presence of 0.75 M?NaCl, or 0.4 μM?Fe3+, or 1 μM?Ni2+. The optimum light intensity and temperature for H2 production were 30 μmol photons m?2?s?1 and 35 °C, respectively. A two-stage culture of A. halophytica was performed in order to overcome the reduction of cell growth in N-free medium. In the first stage, cells were grown in normal medium to accumulate biomass, and in the second stage, H2 production by the obtained biomass was induced by growing cells in N-free medium supplemented with various chemicals for 24 h. A. halophytica grown in N-free medium containing various MgSO4 concentrations had a high H2 production rate between 11.432 and 12.767 μmol H2 mg?chlorophyll a (chl a)?1?h?1, a 30-fold increase compared to cells grown in normal medium. The highest rate of 13.804 μmol H2 mg?chl a ?1?h?1 was obtained when the N-free growth medium contained 0.4 μM Fe3+. These results suggested the possibility of using A. halophytica and some other halotolerant cyanobacteria thriving under extreme environmental conditions in the sea as potential sources for H2 production in the future.  相似文献   

7.
A modified version of amarantin, main seed storage protein of Amaranthus hypochondriacus, carrying four antihypertensive biopeptides Val-Tyr into the acidic-subunit of the protein, was expressed in cell suspension cultures of Nicotiana tabacum L. NT1. Cell growth and viability kinetics were assessed to determine optimal conditions for genetic transformation via Agrobacterium tumefaciens. Selection of putative transgenic calli was conducted using 25 μg ml?1 hygromycin. Presence of the transgene was confirmed using histological glucuronidase assay and PCR analysis. Accumulation and expression of the recombinant protein was detected using Western blot analysis. Protein hydrolysate of transgenic calli showed high levels of inhibition of the angiotensin converting enzyme, with an IC50 value of 3.5 μg ml?1. This was 10-fold lower than that of protein extracts of wild-type cells, with an IC50 of 29.0 μg ml?1.  相似文献   

8.
Bioactive compounds from the medicinal plant, Eurycoma longifolia Jack have been shown to promote anti-proliferative effects on various cancer cell lines. Here we examined the effects of purified eurycomanone, a quassinoid found in Eurycoma longifolia Jack extract, on the expression of selected genes of the A549 lung cancer cells. Eurycomanone inhibited A549 lung cancer cell proliferation in a dose-dependent manner at concentrations ranging from 5 to 20 μg/ml. The concentration that inhibited 50% of cell growth (GI50) was 5.1 μg/ml. The anti-proliferative effects were not fully reversible following the removal of eurycomanone, in which 30% of cell inhibition still remained (p < 0.0001, T-test). At 8 μg/ml (GI70), eurycomanone suppressed anchorage-independent growth of A549 cells by >25% (p < 0.05, T-test, n = 8) as determined using soft agar colony formation assay. Cisplatin, a chemotherapy drug used for the treatment of non small cell lung cancer on the other hand, inhibited A549 cells proliferation at concentrations ranging from 0.2 μg/ml to 15 μg/ml with a GI50 of 0.58 μg/ml. The treatment with eurycomanone reduced the abundance expression of the lung cancer markers, heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, p53 tumor suppressor protein and other cancer-associated genes including prohibitin (PHB), annexin 1 (ANX1) and endoplasmic reticulum protein 28 (ERp28) but not the house keeping genes. The mRNA expressions of all genes with the exception of PHB were significantly downregulated, 72 h after treatment (p < 0.05, T-test, n = 9). These findings suggest that eurycomanone at viable therapeutic concentrations of 5-20 μg/ml exhibited significant anti-proliferative and anti-clonogenic cell growth effects on A549 lung cancer cells. The treatment also resulted in suppression of the lung cancer cell tumor markers and several known cancer cell growth-associated genes.  相似文献   

9.
A new series of 1,4-dihydropyridine derivatives (2a–h, 3a–e, and 4a–e) were systematically designed and synthesized via ultrasound irradiation methods with easy work-up and good yields. Compounds structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectra. The synthesized compounds were screened for both antimicrobial and anticoagulant activities. Compound 2e (MIC: 0.25?μg/mL) was highly active against Escherichia coli and compound 2c (MIC: 0.5?μg/mL) was also highly active against Pseudomonas aeruginosa compared with ciprofloxacin. (MIC: 1?μg/mL) The antifungal activity of 2c (MIC: 0.5?μg/mL) against Candida albicans was high relative to that of clotrimazole (MIC: 1?μg/mL). Anticoagulant activity was determined by activated partial thromboplastin time (APTT) and prothrombin time (PT) coagulation assays. Compound 4-(4-hydroxyphenyl)-2,6-dimethyl-N3,N5-bis(5-phenyl-1,3,4-thiadiazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxamide 3d (>1000?s in APTT assays) was highly active in anticoagulant screening compared with the reference of heparin.Cytotoxicity was evaluated using HepG2 (liver), HeLa (cervical), and MCF-7 (breast) cancer cell lines, with high toxicities observed for 2c (GI50?=?0.02?μm) against HeLa cell line and 2e (GI50?=?0.03?μm) equipotant against MCF-7 cell line. Therefore, the compounds 2e, 2c and 3d can serve as lead molecules for the development of new classes of antimicrobial and anticoagulant agent.  相似文献   

10.
The effect of culture medium nutrients on growth and alkaloid production by plant cell cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley (Icacinaceae) was studied with a view to increasing the production of the alkaloid camptothecin, a key therapeutic drug used for its anticancer properties. Amongst the various sugars tested with Murashige and Skoog (MS) medium, such as glucose, fructose, maltose, and sucrose, maximum accumulation of camptothecin was observed with sucrose. High nitrate in the media supports the biomass, while high ammonium enhances the camptothecin content. Selective feeding of 60 mM total nitrogen with a NH4 +/NO3 ? balance of 5/1 on day 15 of the culture cycle results in a 2.4-fold enhancement in the camptothecin content over the control culture (28.5 μg/g DW). Furthermore, the sucrose feeding strategy greatly stimulated cell biomass and camptothecin production. A modified MS medium was developed in the present study, which contained 0.5 mM phosphate, a nitrogen source feeding ratio of 50/10 mM NH4 +/NO3 ? and 3 % sucrose with additional 2 % sucrose feeding (added on day 12 of the cell culture cycle) with 10.74 μM naphthaleneacetic acid and 0.93 μM kinetin. Finally, the selective medium has 1.7- and 2.3-fold higher intracellular and extracellular camptothecin content over the control culture (29.2 and 8.2 μg/g DW), respectively.  相似文献   

11.
The effect of tannins was investigated on growth and α-amylase (α-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1) production by the edible fungal species Calvatia gigantea, grown in a laboratory-scale fermenter on acorn starch media containing up to 2 g tannins l−1. No inhibition of both growth and amylase excretion was observed when the fungus was cultivated on media containing 40 to 100 times higher tannin concentration than that reported to inhibit microbial growth. Amylase excretion was enhanced when starch was dry sterilized but specific growth rate was higher when starch was wet sterilized. Biomass and amylase production increased with increasing substrate concentration and specific growth rate reached its maximum value at 20 g l−1 starch concentration. The optimum pH of biomass and amylase productionwas 5.0–5.5 and 6.0−6.5 respectively and that of temperature was 29–32 and 29–30°C respectively. Maximum yields of 68 250 U amylase and 0.58–0.60 g biomass g−1 acorn were obtained at optimum growth conditions. A plot of reciprocal growth rate vs. reciprocal starch concentration made it possible to calculate Ks = 0.84 g acorn starch l−1 and μmax = 0.249 h−1.  相似文献   

12.
CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85?μM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6–0.8?μM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5–1.0?μmol P450 g DCW ?1 , for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7?g octanol L BRM ?1 was obtained within 24?h (0.34?g L BRM ?1 ?h?1) with IPTG-induced cells containing only 0.20?μmol P450 g DCW ?1 , when glucose (22?g L BRM ?1 ) was added for cofactor regeneration.  相似文献   

13.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using 15NH3. At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH3-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH3. More cell nitrogen was formed from NH3 during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its 15N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

14.
Repeated-batch fermentation by a flocculating fusant, Saccharomyces cerevisiae HA 2, was done in a molasses medium that contained 20% (w/v) total sugar, at 30°C in an automatically controlled fermentor, and the effects of ethanol concentration on the specific growth rate and the specific production rate of ethanol were studied. Both the specific growth rate and the specific production rate of ethanol fell with increase of ethanol concentration, and there was a linear correlation between each rate and the concentration of thanol. The maximum specific growth rate (μmax) and the maximum specific production rate of ethanol (qmax) were 0.12 h−1 and 0.1 g ethanol/109 cells·h, respectively. The specific growth rate and the specific production rate of ethanol fell to zero at ethanol concentration of 89 g/l and 95 g/l, respectively. The number of viable cells, calculated from the linear inhibition equation, was 1.3 × 109 cells/ml for production of 85 g/l ethanol at a dilution rate (D1) of 0.2 h−1. Based on this estimation, a laboratory-scale continuous fermentation, using two fermentors in series, was done. In the second fermentor, 85 g/l ethanol was produced at a dilution rate (D1) of 0.2 h−1 by the active feedig of the fermented mash from the first fermentor into the second fermentor by pumping (hereafter called active feeding). To maintain the number of viable cells above 109 cells/ml in the second fermentor, a active feeding ratio of more than 23% was required. Under these conditions, 81 g/l ethanol was produced in the second fermentor at a dilution rate (Dt) of 0.25 h−1, and the high ethanol productivity of 20.3 g/l·h could be achieved. A bench-scale continuous fermentation, using two fermentors in series, with a active feeding ratio of 25% was done. An ethanol concentration of 84 g/l in the second fermentor at a dilution rate (Dt) of 0.25 h−1 was achieved, just as it was in the laboratory-scale fermentation test.  相似文献   

15.
A protocol has been standardized for establishment and characterization of cell suspension cultures of Stevia rebaudiana in shake flasks, as a strategy to obtain an in vitro stevioside producing cell line. The effect of growth regulators, inoculum density and various concentrations of macro salts have been analyzed, to optimize the biomass growth. Dynamics of stevioside production has been investigated with culture growth in liquid suspensions. The callus used for this purpose was obtained from leaves of 15-day-old in vitro propagated plantlets, on MS medium fortified with benzyl aminopurine (8.9 μM) and naphthalene acetic acid (10.7 μM). The optimal conditions for biomass growth in suspension cultures were found to be 10 g l?1 of inoculum density on fresh weight basis in full strength MS liquid basal medium of initial pH 5.8, augmented with 2,4-dichlorophenoxy acetic acid (0.27 μM), benzyl aminopurine (0.27 μM) and ascorbic acid (0.06 μM), 1.0× NH4NO3 (24.7 mM), 3.0× KNO3 (56.4 mM), 3.0× MgSO4 (4.5 mM) and 3.0× KH2PO4 (3.75 mM), in 150 ml Erlenmeyer flask with 50 ml media and incubated in dark at 110 rpm. The growth kinetics of the cell suspension culture has shown a maximum specific cell growth rate of 3.26 day?1, doubling time of 26.35 h and cell viability of 75 %, respectively. Stevioside content in cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The results of present study are useful to scale-up process and augment the S. rebaudiana biological research.  相似文献   

16.
Two equations, describing surface colonization, were evaluated and compared using suspended glass slides in a continuous culture ofPseudomonas aeruginosa. These equations were used to determine surface growth rates from the number and distribution of cells present on the surface after incubation. One of these was the colonization equation which accounts for simultaneous attachment and growth of bacteria on surfaces: $$N = (A/\mu )e^{\mu t} - A/\mu $$ where N=number of cells on surface (cells field?1); A=attachment rate (cells field?1h?1);μ=specific growth rate (h?1); t=incubation period (h). The other was the surface growth rate equation which assumes that the number of colonies of a given size (Ci) will reach a constant value (Cmax) which is equal to A divided byμ: $$\mu = \frac{{\ln \left( {\frac{N}{{C_i }} + 1} \right)}}{t}$$ Both equations gave similar results and the time required to approximate Cmax may not be as long as was previously thought. In all cases both A andμ continuously decreased throughout the incubation period. These decreases may be due to various effects of microbial accumulation on the surface. Both equations accurately determined surface growth rates despite highly variable attachment rates. Growth rates were similar for both the liquid phase of the culture and the solid-liquid interface (0.4 h?1). Use of the surface growth rate equation is favored over the use of the colonization equation since the former does not require a computer to solve forμ and the counting procedure is simplified.  相似文献   

17.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

18.
The effect of pH-control modes on cell growth and exopolysaccharide production by Tremella fuciformis was evaluated in a 5-L bioreactor. The results show that the maximal dry cell weight (DCW) and exopolysaccharide production were 23.57 and 4.48 g L−1 in pH-stat fermentation, where the maximal specific growth rate (μmax) and specific production rate of exopolysaccharide (PP/X) were 1.03 and 0.24 d−1, respectively; under pH-shift cultivation, the maximal DCW and exopolysaccharide production were 30.57 and 3.90 g L−1, where the μmax and PP/X were 1.21 and 0.06 d−1. Unlike batch fermentation, maximal DCW and exopolysaccharide production merely reached 15.04 and 2.0 g L−1, where the μmax and PP/X were 0.86 and 0.05 d−1, respectively. These results suggest that a pH-stat strategy is a more efficient way of performing the fermentation process to increase exopolysaccharide production. Furthermore, this research has also proved that the three-stage pH-control mode is effective for cell growth.  相似文献   

19.
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L?1 days?1 reached the maximum cell concentration of 2,393 ± 241 mg L?1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.  相似文献   

20.
Batch fermentative production of 2,3-butanediol by Klebsiella oxytoca was investigated using various oxygen supply methods though varying agitation speed. Based on the analysis of three kinetic parameters including specific cell growth rate (μ), specific glucose consumption rate (qs) and specific 2,3-butanediol formation rate (qp), a two-stage agitation speed control strategy, aimed at achieving high concentration, high yield and high productivity of 2,3-butanediol, was proposed. At the first 15 h, agitation speed was controlled at 300 rpm to obtain high μ for cell growth, subsequently agitation speed was controlled at 200 rpm to maintain high qp for high 2,3-butanediol accumulation. Finally, the maximum concentration of 2,3-butanediol reached 95.5 g l−1 with the yield of 0.478 g g−1 and the productivity of 1.71 g l−1 h−1, which were 6.23%, 6.22% and 22.14% over the best results controlled by constant agitation speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号