首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycol ethers such as 2-methoxyethanol (2-ME) are reproductive toxins. The genotoxicity of 2-ME, especially its metabolites: methoxyacetaldehyde (MALD) and methoxyacetic acid (MAA), is not adequately investigated yet. We have shown previously that MALD induced mutation in the bacterial gpt gene which is inserted in an autosome of CHO-AS52 cell line but not in the hprt gene on the X chromosome of CHO-K1-BH4 cell line. These data suggest that MALD induces major deletion-type mutation. If this prediction is correct we would expect to observe that MALD is an efficient inducer of chromosome aberrations in both CHO cell lines. We have conducted a cytogenetic study using both CHO cell lines and human lymphocytes to investigate this phenomenon. Our results show that human lymphocytes treated with 10–30 mM MALD for 1 h or 0.05–0.5 mM MALD for 24 h induced significant dose-dependent increase of sister-chromatid exchanges (SCE) (p < 0.05). It also induced significant dose-dependent increase (p < 0.05) of chromosome aberrations in human lymphocytes (10–40 mM treated for 1 h, or 0.05–2.5 mM for 24 h) and in both CHO cell lines (1.25–20 mM for 3 h). Treatment of these cells with the parent compound, 2-ME did not induce chromosome aberrations nor SCE unless very high doses of the chemical were used. In conclusion, these results indicate that MALD is clastogenic to different cell types therefore it is potentially carcinogenic. The genotoxic effects of 2-ME in humans will be dependent upon the metabolic capability of individuals to bioactivate 2-ME to MALD.  相似文献   

2.
The glycol ethers 2-methoxyethanol (2-ME) and 2-ethoxyethanol (2-EE) prolong gestation in rodents. Because gap junctions in the myometrium likely facilitate parturition, the present study examined inhibition of gap junctional communication by 2-ME and 2-EE in myometrial smooth-muscle cell cultures. To measure gap junctional communication, the fluorescent dye Lucifer yellow was injected into cultured cells and the transfer of the dye to adjacent cells was scored with epifluorescence microscopy. The data are presented as the percentage of cells adjacent to the microinjected cell that exhibited dye following microinjection. A 30 min treatment with 32 or 63 mmol/L 2-ME decreased dye transfer to 71% and 63%, respectively (p0.05; control 90%). Similarly, 2-EE inhibited dye transfer, although myometrial cells were less sensitive to 2-EE compared to 2-ME. Dye transfer returned to control levels after 2 h in the continued presence of 2-ME. The primary metabolite of 2-ME, methoxyacetic acid (MAA), had no effect on dye transfer at concentrations equimolar to 2-ME. Because 2-ME and 2-EE inhibited gap junctional communication only at high concentrations and because the inhibition reversed in the continued presence of the compounds, it is suggested that glycol ethers delay parturition by a mechanism independent of a direct action on myometrial gap junctions.  相似文献   

3.
Professional workers and consumers frequently use hard-surface cleaning products and these products may contain glycol ethers (GEs), such as 2-Butoxyethanol (2-BE). Governmental agencies have set exposure limits for some chemicals used in cleaning products and these exposure limits have been used as guides to protect human health. The study objectives were to determine realistic inhalation exposures for professional workers performing multiple, sequential cleaning tasks and compare the exposures to the acute reference exposure level (REL), which California established for 2-BE. The ConsExpo model was acceptable for evaluating exposure based on a comparison of its predictions to experimentally measured 2-BE vapor concentrations from hard-surface cleaning. The typical worker exposure was predicted for a cleaning scenario consisting of three bathrooms and three kitchens (or three bedrooms) in a 1-h period. This exposure scenario would not be expected to result in significant health consequences because the predicted exposure was much lower than the REL. The predicted chronic and aggregate exposures were also acceptable. This analysis identified two important variables that affect inhalation exposure: cleaners should be used with adequate ventilation and wet wiping towels should be properly disposed so that they are not a source of continuing exposure.  相似文献   

4.
2-Methoxyethanol (ethylene glycol monomethyl ether) (EGME), is one of the most commonly used solvents for industrial and consumer products. Although the solvent has been shown to be a reproductive toxin the genotoxic activities of EGME especially its metabolites, have not been adequately investigated. The mutagenicity and cytotoxicity of EGME and its major metabolites, methoxyacetaldehyde (MALD) and methoxyacetic acid (MAA) in Chinese hamster ovary (CHO) cells were therefore examined by us. We have determined the mutagenicity of these compounds at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in CHO-K1-BH4 cells (CHO/HPRT assay) and the xanthine-guanine phosphoribosyl transferase (gpt) locus in CHO AS52 cells (AS52/GPT assay). The results show that these chemicals are not mutagenic to the hprt locus in CHO-K1-BH4 cells either with or without rat liver S9 mix as the metabolic activating system. With AS52 cells, only MALD is mutagenic in the absence of S9. It induced a dose-dependent mutagenic response. A dose-dependent cytotoxicity was induced by all compounds in both cell lines. MALD is the most and EGME is the least cytotoxic compounds. Our study shows that a metabolite of EGME, MALD, is highly cytotoxic and likely induces deletion-type mutations in AS52 cells. The genotoxic effect of EGME is, therefore, dependent upon its metabolism and its detection is dependent upon the assays used.  相似文献   

5.
2-Methoxyestradiol (2-ME) is an estradiol metabolite with antiangiogenic and antitumor activity. It is formed by granulosa cell (GC) catechol-O-methyltransferase activity and is present in the normal follicle at high concentrations. In this unique microenvironment, it may regulate selected cell types via autocrine and/or paracrine action. To assess the possibility that 2-ME or estradiol might exert differential mitotic and/or apoptotic effects on endothelial cells and GCs, we compared their actions on primary cultures of hormone- and/or growth factor-stimulated porcine GCs (pGCs) as well as two types of endothelial cells, primary cultures of porcine endothelial cells (pECs), and a spontaneously transformed rabbit endothelial vascular cell (REVC) line. The 2-ME, but not estradiol, dose dependently suppressed tritiated thymidine ((3)H-T) incorporation into epidermal growth factor (EGF)-stimulated REVCs and EGF/insulin (INS)-stimulated pECs. In contrast, 2-ME did not attenuate incorporation in FSH/INS-stimulated pGCs. It reduced incorporation by approximately 50% in EGF/INS-stimulated pGCs, indicating that responsiveness to 2-ME in normal cells can be modulated by hormone and growth factor treatment. Estradiol was not antimitotic to pGCs. As indicated by 4',6-diamido-2-phenylindole hydrochloride nuclear staining, estradiol was nonapoptotic in either cell type, and 2-ME significantly increased apoptosis of REVCs, but not of pGCs. In a cell migration assay, REVC movement was attenuated by 2-ME, but not by estradiol. In summary, the results show that antimitotic as well as proapoptotic responses to 2-ME vary with cell type and, in the case of pGC antimitotic activity, with the regulatory microenvironment. Thus, they provide a rationale for autocrine and/or paracrine action of 2-ME at its site of production in vivo, and they strongly support the concept of 2-ME as a candidate ovarian angiogenesis inhibitor.  相似文献   

6.
2-Methoxyestradiol. 2-Methoxyestradiol (2-ME) is an endogenous estradiol metabolite that disrupts microtubule function, suppresses murine tumors, and inhibits angiogenesis. Since some microtubule inhibitors have been shown to alter radiosensitivity, we have evaluated 2-ME as a radiation enhancer in vitro. H460 human lung cancer cells were plated, treated with 2-ME for 24 h, and irradiated; then colony-forming ability was assessed. The radiation dose enhancement ratios (DERs) using this protocol were 1.3, 1.8 and 2.1 for 1, 1.5 and 2 microM 2-ME, respectively. Using a single-cell plating protocol, the respective DERs were 1.2, 1.5 and 1.8. The parent compound of 2-ME, beta-estradiol, did not enhance radiation effects at equally cytotoxic doses. Isobologram analysis showed that 1 microM 2-ME was additive with radiation, but that 1.5 and 2 microM were synergistic. Cell cycle analysis showed a dose-dependent increase in the percentage of cells in the radiosensitive G(2)/M phase after a 24-h treatment with 2-ME; a threefold increase in the percentage of cells in G(2)/M phase was observed using 2 microM 2-ME. Treatment with 2 microM 2-ME almost completely inhibited repair of sublethal damage (SLD) as shown using split-dose recovery. Radiosensitive, repair-deficient murine SCID (severe combined immunodeficient) cells did not show enhancement of radiation effects with 2 microM 2-ME, but enhancement was observed in the wild-type parental cells (CB-17). SCID cells complemented with human DNA-dependent protein kinase restored radioenhancement by 2-ME. In addition, MCF-7 breast cancer cells were also radiosensitized by 2 microM 2-ME (DER = 2.1). These data suggest that 2-ME is a potential radiation sensitizer, in addition to its previously reported antitumor and antiangiogenic properties. We have verified the antiangiogenic activity of 2-ME in vitro using human endothelial cells. Based on these results, we hypothesize that the mechanism of radiation enhancement may involve redistribution of cells into G(2)/M phase by 2-ME, and that the resulting population of cells is repair-deficient and thus radiosensitive.  相似文献   

7.
2-Methoxyestradiol (2-ME) is an endogenous metabolite of 17β-estradiol. In this study, we determined the antitumour activities of 2-ME on the well-differentiated EC9706 esophageal carcinoma cells in vitro. 2-ME had a strong antiproliferative effect on EC9706 cells and caused an increase in the population of apoptotic cells, detected by flow cytometry. A significant number of cells were blocked in the G(2)/M phase of the cell cycle. 2-ME-treated cells demonstrated an increase in cyclin B1 and c-Myc protein levels, as well as an increase in the percentage of G(2)/M phase. Their up-regulation may be involved in 2-ME-induced apoptosis and G(2)/M cell cycle arrest of the EC9706 cells, and it precedes the onset of apoptosis.  相似文献   

8.
We have demonstrated for the first time that the steroid metabolite, 2-methoxyestradiol (2-ME) is a powerful growth inhibitor of human osteosarcoma 143 B cell line by pleiotropic mechanisms involving cell cycle arrest at two different points and apoptosis. The ability of 2-ME to inhibit cell cycle at the respective points has been found concentration dependent. 1 microM 2-ME inhibited cell cycle at G1 phase while 10 microM 2-ME caused G2/M cell cycle arrest. As a natural estrogen metabolite 2-ME is expected to perturb the stability of microtubules (MT) in vivo analogously to Taxol--the MT binding anticancer agent. Contrary to 2-ME, Taxol induced accumulation of osteosarcoma cells in G2/M phase of cell cycle only. The presented data strongly suggest two different mechanisms of cytotoxic action of 2-ME at the level of a single cell.  相似文献   

9.
2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, is highly cytotoxic to a wide range of tumor cells but is harmless to most normal cells. However, 2-ME prevented bone loss in ovariectomized rats, suggesting it inhibits bone resorption. These studies were performed to determine the direct effects of 2-ME on cultured osteoclasts. 2-ME (2 microM) reduced osteoclast number by more than 95% and induced apoptosis in three cultured osteoclast model systems (RAW 264.7 cells cultured with RANKL, marrow cells co-cultured with stromal support cells, and spleen cells cultured without support cells in media supplemented with RANKL and macrophage colony stimulating factor (M-CSF)). The 2-ME-mediated effect was ligand specific; 2-hydroxyestradiol (2-OHE), the immediate precursor to 2-ME, exhibited less cytotoxicity; and 2-methoxyestrone (2-MEOE1) the estrone analog of 2-ME, was not cytotoxic. Co-treatment with ICI 182,780 did not antagonize 2-ME, suggesting that the cytotoxicity was not estrogen receptor-dependent. 2-ME-induced cell death in RAW 264.7 cells coincided with an increase in gene expression of cytokines implicated in inhibition of differentiation and induction of apoptosis. In addition, the 2-ME-mediated decrease in cell survival was partially inhibited by anti-lymphotoxin(LT)beta antibodies, suggesting that 2-ME-dependent effects involve LTbeta. These results suggest that 2-ME could be useful for treating skeletal diseases in which bone resorption is increased, such as postmenopausal osteoporosis and cancer metastasis to bone.  相似文献   

10.
11.
W J Scott  R Fradkin  W Wittfoht  H Nau 《Teratology》1989,39(4):363-373
The embryotoxic effects of 2-methoxyethanol (2-ME) were studied in non-human primates to better assess the risk for women of child-bearing age exposed to this agent. Macaca fascicularis females were treated daily throughout the organogenetic phase of pregnancy (days 20-45) by gavage and the fetuses collected at day 100 by Caesarean section. At the highest dose (0.47 mmole/kg), all eight pregnancies ended in death of the embryo. One of these dead embryos was abnormal, missing a digit on each forelimb. At the middle dose (0.32 mmole/kg), three of 10 pregnancies ended in embryonic death, presumably due to 2-ME exposure and three of 13 pregnancies met a similar fate at the low dose (0.16 mmole/kg). In each of these two groups, an additional pregnancy was lost to abortion, but both were thought to be spontaneous, which usually occurs in 10-20% of untreated macaque pregnancies. These results indicate that 2-ME is a potent toxin to the developing primate embryo and thereby furthers the concern about exposure of pregnant women to this agent, although maternal toxicity was evident in nearly all treated pregnancies and was especially severe in the high-dosage animals. Distribution of the major metabolite of 2-ME, 2-methoxyacetic acid (2-MAA), indicated a long half-life (ca. 20 h), resulting in accumulation of metabolite in maternal serum after repeated daily dosing. Transplacental studies revealed uniform distribution in the embryo and extraembryonic fluids at a concentration similar to that in maternal serum. The yolk sac, on the other hand, accumulated a very high concentration of 2-MAA, but the embryotoxic significance of this observation is unknown.  相似文献   

12.
2-Methoxyestradiol (2-ME) is a metabolite of 17beta-estradiol and a natural component of follicular fluid. Local concentrations of 2-ME may be increased by exposure to environmental pollutants that activate the expression of enzymes in the metabolic pathway from 17beta-estradiol to 2-ME. It has been suspected that this may have adverse effects on spindle formation in maturing oocytes, which would affect embryo quality. To study the dose-response patterns, we exposed denuded mouse oocytes to 2-ME during in vitro maturation. Meiotic progression, spindle morphology, centrosome integrity, and chromosome congression were examined by immunofluorescence and noninvasive polarizing microscopy (PolScope). Chromosomal constituents were assessed after spreading and C-banding. 2-ME sustained MAD2L1 expression at the centromeres and increased the number of meiosis I-blocked oocytes in a dose-dependent manner. 2-ME also caused dramatic dose-dependent increases in the hyperploidy of metaphase II oocytes. Some of these meiosis II oocytes contained anaphase I-like chromosomes, which suggests that high concentrations of the catecholestradiol interfere with the physical separation of chromosomes. Noninvasive PolScope analysis and tubulin immunofluorescence revealed that perturbations in spindle organization, which resulted in severe disturbances of the chromosome alignment at the spindle equator (congression failure), were caused by 2-ME at meiosis I and II. Pericentrin-positive centrosomes failed to align at the spindle poles, and multipolar spindles and prominent arrays of cytoplasmic microtubule asters were induced in 2-ME-exposed metaphase II oocytes. In conclusion, a micromolar level of 2-ME is aneugenic for mammalian oocytes. Therefore, exposure to 2-ME and conditions that increase the intrinsic local concentration of 2-ME in the ovary may affect fertility and increase risks for chromosomal aberrations in the oocyte and embryo.  相似文献   

13.
2-methoxyestradiol does not inhibit superoxide dismutase   总被引:2,自引:0,他引:2  
It has been reported in the literature that the endogenous estrogen metabolite 2-methoxyestradiol (2-ME) inhibits both manganese and copper,zinc superoxide dismutases (Mn and Cu,Zn SODs) and that this mechanism is responsible for 2-ME's ability to kill cancer cells. In fact, as demonstrated using several SOD assays including pulse radiolysis, 2-ME does not inhibit SOD but rather interferes with the SOD assay originally used. Nevertheless, as confirmed by aconitase inactivation measurements and lactate dehydrogenase release in human leukemia HL-60 cells, 2-ME does increase superoxide production in these cells and is more toxic than its non-O-methylated precursor 2-hydroxyestradiol. Other mechanisms previously suggested in the literature may explain 2-ME's ability to increase intracellular superoxide levels in tumor cells.  相似文献   

14.
Endocrine therapy is widely accepted for the treatment of hormone receptor-positive breast cancer. However, in many cases eventually resistance will develop and tumor regrows. Combination therapy may be one way to resolve this problem. In the present study we investigated the effect of a combination of the widely used antiestrogen tamoxifen with the endogenous estradiol metabolite 2-methoxyestradiol (2-ME) on the proliferation of human estrogen receptor-positive and receptor-negative breast cancer cells.The receptor-positive cell line MCF-7 and the receptor-negative cell line BM were treated with 4-hydroxytamoxifen (4-OHTam) and 2-methoxyestradiol in the concentration range of 0.8-25 microM alone and equimolar combinations for 4 days. The proliferation of the cells was determined using the ATP-chemosensitivity test.4-Hydroxytamoxifen inhibited proliferation of MCF-7 and BM cells with IC(50) values of 31 and 10 microM, the corresponding figures for 2-methoxyestradiol were 52 and 8 microM. The combination showed IC(50) values of 6 microM and 4 microM.These results indicate that a combination of tamoxifen with 2-methoxyestradiol showed an additive inhibitory effect concerning the proliferation of estrogen receptor-positive and receptor-negative breast cancer cell lines. Thus a combination of these substances may allow ameliorating of adverse events of tamoxifen by reducing its concentrations and probably also drug resistance and should be tested in clinical trials.  相似文献   

15.
2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17beta-Estradiol (E2), induces cell death in osteosarcoma cells. To further understand the molecular mechanisms of action, we have investigated cell cycle progression in 2-ME-treated human osteosarcoma (MG63, SaOS-2 and LM7 [corrected]) cells. At 5 microM, 2-ME induced growth arrest by inducing a block in cell cycle; 2-ME-treatment resulted in 2-fold increases in G1 phase cells and a decrease in S phase cells in MG63 and SaOS-2 osteosarcoma cell lines, compared to the appropriate vehicle controls. 2-ME-treatment induced a threefold increase in the G2 phase in LM7 [corrected] osteosarcoma cells. The results demonstrated steroid specificity, as the tumorigenic metabolite, 16alpha-hydroxyestradiol (16-OHE), did not have any effect on cell cycle progression in osteosarcoma cells. The cell cycle arrest coincided with an increase in expression of the cell cycle markers p21, p27 and p53 proteins in 2-ME-treated osteosarcoma cells. Also, MG63 cells, transiently transfected with cDNA for a 'loss of function mutant' RNA-dependent protein kinase (PKR) protein, were resistant to 2-ME-induced cell cycle arrest. These results suggest that 2-ME works in concert with factors regulating cell cycle progression, and cell cycle arrest precedes cell death in 2-ME-treated osteosarcoma cells.  相似文献   

16.
In this report we describe that 1,25(OH)(2)D(3)-3-BE, a VDR-affinity labeling analog of 1,25(OH)(2)D(3), showed strong and dose-dependent growth-inhibitory effect in several epithelial cells, i.e., keratinocytes (primary cells), MCF-7 breast cancer, PC-3, and LNCaP prostate cancer and PZ-HPV-7 immortalized normal prostate cell-lines. Furthermore, 10(-6) M of 1,25(OH)(2)D(3)-3-BE induced apoptosis specifically in LNCaP and PC-3 cells; and the effect was much less pronounced at lower doses. We also showed that the effect (of 1,25(OH)(2)D(3)-3-BE) was not due to probable degradation (hydrolysis) of 1,25(OH)(2)D(3)-3-BE or random interaction of this molecule with cellular proteins. Tissue- or cell-specific action of 1,25(OH)(2)D(3) and its mimics is not common due to the ubiquitous nature of VDR. Furthermore, variable effects of 1,25(OH)(2)D(3) and its analogs in various cell-lines potentially limits their application as anticancer agents. We showed that 1,25(OH)(2)D(3)-3-BE displayed similar growth-inhibitory and cytotoxic activities towards androgen sensitive LNCaP and androgen-independent PC-3 cell-lines. Therefore, these results raise the possibility that 1,25(OH)(2)D(3)-3-BE or similar VDR-cross linking analogs of 1,25(OH)(2)D(3) might be considered for further development as potential candidates for prostate cancer.  相似文献   

17.
Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells   总被引:11,自引:0,他引:11  
Bu S  Blaukat A  Fu X  Heldin NE  Landström M 《FEBS letters》2002,531(2):141-151
Prostate and breast carcinomas are sex hormone-related carcinomas, which are known to be associated with an over-expression of the proto-oncogene Bcl-2. Here, we report that 2-methoxyestradiol (2-ME), an endogenous metabolite of estrogen that does not bind to nuclear estrogen receptors, effectively induces apoptosis in Bcl-2-expressing human prostate and breast carcinoma cells in vitro and in a rat prostate tumor model in vivo. In several cell lines derived from prostate, breast, liver and colorectal carcinomas, 2-ME treatment led to an activation of c-Jun N-terminal kinase (JNK) and phosphorylation of Bcl-2, which preceded the induction of apoptosis. In summary, our data suggest that 2-ME induces apoptosis in epithelial carcinomas by causing phosphorylation of JNK, which appears to be correlated with phosphorylation of Bcl-2.  相似文献   

18.
Efficient energy utilization is essential for cell growth; in an attempt to improve the growth conditions of the rat T-lymphocyte culture model for potential use in studying the mutagenic activity of carcinogens in vitro, we have investigated the effects of phytohemagglutinin (PHA), interleukin-2 (IL-2) and 2-mercaptoethanol (2-ME) on the activities of intermediary metabolism enzymes and cell proliferation. Isolated lymphocytes were cultured in the presence and absence of PHA, IL-2, or 2-ME. The intermediary metabolism enzymes investigated were glutamate dehydrogenase, glutamate-pyruvate transaminase, malate dehydrogenase, isocitrate dehydrogenase, lactate dehydrogenase, pyruvate kinase, and fatty acid synthetase (FAS). Measurable activity of all enzymes investigated, except for FAS, was detected in PHA-stimulated cells cultured with IL-2 or 2-ME. The unstimulated lymphocytes had significantly lower enzyme activity than stimulated cells. The combination of all three agents showed increased enzyme activity. This increase in activity brought about by the combination of the three agents was not reproduced by either agent acting alone. In general, the increase in enzyme activity correlated with cell proliferation as measured by [3H]thymidine uptake in PHA-stimulated cultures containing IL-2 and/or 2-ME. The results suggest that the addition of exogenous IL-2 and 2-ME enhances metabolic function and may be beneficial in in vitro culture of rat lymphocytes.Abbreviations PHA phytohemagglutinin - IL-2 interleukin-2 - 2-ME 2-mercaptoethanol - GDH glutamate dehydrogenase - GPT glutamate-pyruvate transaminase - MDH malate dehydrogenase - ICD isocitrate dehydrogenase - LDM lactate dehydrogenase - PK pyruvate kinase - FAS fatty acid synthetase  相似文献   

19.
The 20- to 50-fold increase in cytolytic T lymphocyte (CTL) activity caused by the addition of 50 muM 2-mercaptoethanol (2-ME) at the onset of a one-way murine mixed leukocyte culture (MLC) between C57BL/6 and DBA/2 splenic lymphocytes appears to be unrelated to early events in the culture: if 2-ME was present for the first 24 hr of culture only, there was no increase on day 4, but if addition of 2-ME was delayed until the last 24 hr of culture, the CTL activity was almost as high as that of cultures that were exposed to 2-ME for the entire 4-day culture period. The increase of CTL activity caused by delayed addition of 2-ME ("2-ME rescue") was used to investigate the mechanism by which the thiol induces differentiation of CTL from precursor cells. 2-ME rescue was mimicked by two other thiols, dithiothreitol and cysteamine phosphate, but at higher concentrations. Because the latter compound has no free sulhydryl group until it diffuses into cells and is enzymatically dephosphorylated, we conclude that thiols may increase the differentiation of CTL from precursor cells by an intracellular process involving free sulphydryl groups rather than by interaction with membrane sulfhydryls or destruction of inhibitor cells or their products. Cell separation experiments indicated that 2-ME rescue was independent of the presence of B lymphocytes and of adherent cells (macrophages) and was restricted to a subpopulation of T lymphocytes that developed into large lymphoid precursor cells during the first 3 days in culture even without 2-ME. The development of this subpopulation required DNA synthesis between 24 nad 72 hr after the onset of MLC. When 2-ME was added to day-3 MLC, CTL activity increased slightly as early as 4 hr later, but the major increase occurred during the second half of the 24 hr "rescue"period. Because this increase was inhibited by cytosine arabinoside (ARA-C), it seems likely that DNA synthesis is associated with and may be required for the differentiation of large precursor lymphoid cells into CTL after the addition of 2-ME.  相似文献   

20.
2-Mercaptoethanol (2-ME) exerts several effects on murine lymphocytes in culture that might explain its ability to enhance survival and growth of these cells. The uptake of the essential amino acid cystine and consequently the maintenance of intracellular glutathione levels are enhanced by 2-ME. Furthermore, 2-ME (even in the disulfide form) causes lymphocytes to release thiols into the culture medium. These effects might protect the cells from oxidative damage. The additional cystine provided by treatment of lymphocyte cultures with 2-ME might also allow adequate protein synthesis to support survival and/or growth. This study was conducted to assess the relative importance of the antioxidant and protein synthesis effects of 2-ME. As expected, 2-ME increased cystine uptake at all concentrations that enhanced growth and survival, but four nonthiol antioxidants that enhanced growth and/or survival either did not substantially affect cystine uptake or decreased it and did not affect the release of cystine or its products. The results presented here demonstrate that antioxidant protection is necessary and sufficient for lymphocyte survival and that cystine uptake in untreated lymphocytes is sufficient to support the protein synthesis needed for survival and limited growth. However, we also noted that concentrations of 2-ME that stimulated maximal growth more than doubled protein synthesis as measured at 8 hr. Thus the portion of the effects of 2-ME not accounted for by antioxidant action could be accounted for by enhanced protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号