首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release ofl-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinty glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process forl-[3H] glutamate resulted in elevation ofV max with no significant alteration inK t as compared to age-matched controls. Depolarization-induced release ofl-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat.  相似文献   

2.
[14C]Glutamine uptake in a crude synaptosomal (P2) fraction, (representing the sum of [14C]glutamine accumulated and [14C]glutamate formed by hydrolysis), is distinct from glutamate uptake. Glutamine uptake is Na+-independent and unaffected by the Na+–K+-ATPase inhibitor ouabain, whereas glutamate uptake is Na+-dependent and inhibited by ouabain. The uptake of both glutamine and glutamate is unaffected by the gamma-glutamyltransferase inhibitor, Acivicin. This indicates that glutamine uptake is not mediated by a carrier, as distinct from that of glutamate, and also not linked to gamma-glutamyl-transferase. Na+ affects the distribution of glutamine-derived glutamate by increasing the synaptosomal content and reducing that of the medium. When glutamate release from synaptosomes preloaded with [14C]glutamate is measured by superfusion technique in order to prevent reuptake, Na+ has been found to inhibit release in a non-depolarizing medium (Ringer buffer with no Ca2+) of the [14C]glutamate as well as of endogenous glutamate. The specific activity of the [14C]glutamine-derived glutamate in the incubation medium is much higher than that in the synaptosomes, indicating that there exists a readily releasable pool of newly formed glutamate in addition to another pool. The latter glutamate pool is partially reduced by Na+.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

3.
The uptake of [14C]glycine and the effect of depolarizing potassium concentrations on its release was investigated in the whole frog retina and its synaptosomal fractions. The uptake of [14C]glycine in retina and synaptosomal fractions was found to be saturable as well as energy and Na+-dependent. TheK m value for glycine uptake was found to be 46 M for P2 fraction and 100 M for P1 fraction, with aV max of 3.5 and 3.8 nmol/mg protein/min respectively. The release of [14C]glycine from P1 and P2 synaptosomal fractions was markedly increased by raising potassium concentration in the medium, in a partially Ca2+-dependent manner. Evoked glycine release was 50% reduced when calcium was omitted from the medium. The K+-stimulated release of glycine from P2 fraction was significantly reduced in the presence of TTX. The cellular origin of the P1 and P2 synaptosomal fractions releasing glycine is discussed.  相似文献   

4.
The uptake of [3H]dopamine (DA) into rat striatal synaptosomes in the presence of a monoamine oxidase inhibitor was studied using a filtration technique. After a 10-min preincubation period, a fast initial uptake of [3H] DA was seen. Uptake reached a maximum after 4 min of incubation. If incubation was continued for more than 7 min, a gradual decrease in synaptosomal [3H]DA levels was found. Uptake was dependent on preincubation time; initial uptake velocity and maximal uptake decreased irreversibly with increasing preincubation periods. Moreover, the capacity of the synaptosomes to retain the [3H]DA during longer incubation times was progressively affected. The decrease in initial uptake activity was due to a decrease in the Vmax of the transport system. Dithiothreitol (2.8 mM) protected synaptosomal uptake activity against deterioration at 37°C. Also, DA itself (10-7M) stabilized the uptake mechanism if added to the suspension before preincubation was started. Since [3H]DA uptake observed after loading the synaptosomes with labeled DA was similar to the uptake seen if the synaptosomes were not previously loaded with DA, it was concluded that under these conditions synaptosomal DA is completely exchangeable with exogenous substrate. Prolonged storage of the synaptosomes at 0°C also resulted in a time-dependent decrease in uptake activity (t1/2= 116 min). The addition of unlabeled DA or dithiothreitol to the suspension did not affect instability at 0°C.  相似文献   

5.
Ethanol (10–200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with [3H]dopamine (DA) and [14C]choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since [14C]acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that -aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing [3H]DA release into the cytoplasm. K+-stimulated release of [3H]DA and [14C]ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of [3H]DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of [3H]DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.  相似文献   

6.
The active uptake of [3H]pipecolic acid increased with incubation time and its uptake at 3 min was half of that at 20 min. [14C]GABA uptake rose earlier, and its uptake at 3 min was almost 80% of that at 20 min. On the other hand, a ratio (pellet/medium) of [3H]pipecolic acid uptake into glial cell-enriched fractions, was much less (0.4–0.6) than that of [14C]GABA (25.8–74.1). GABA, 10–4 M, and pipecolic acid, 10–4 M, produced a significant inhibition of [3H]pipecolic acid uptake into P2 fractions. Pipecolic acid, 10–4 M, significantly reduced the synaptosomal and glial uptake of [14C]GABA. GABA, 10–4 M, affected neither spontaneous nor high K+-induced release of [3H]pipecolic acid from brain slices. It is suggested that pipecolic acid is involved in either synaptic transmission or in its modulation at GABA synapses in the central nervous system.  相似文献   

7.
This study examined whether maturity of rat brain may be relevant for the sensitivity to diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 on [3H]glutamate uptake and release, in vitro. Brain synaptosomes were isolated from young (14- and 30-day-old) and adult rats and incubated at different concentrations of (PhSe)2 or (PhTe)2. The results demonstrated that the highest concentration (100 μM) of (PhSe)2 and (PhTe)2 inhibited the [3H]glutamate uptake by synaptosomes of brain at all ages. In the adult brain, (PhSe)2 did not inhibit the [3H]glutamate uptake at the lowest concentration (10 μM). The highest concentration of (PhTe)2 inhibited the [3H]glutamate uptake more in the 14-day-old than in the 30-day-old rats or adult rats. In the 30-day-old animals, the highest concentration of (PhSe)2, and the lowest concentration of (PhTe)2, increased the basal [3H]glutamate release. At the highest concentration, (PhTe)2 increased the basal and K+-stimulated glutamate release on all ages evaluated. The results suggest that (PhSe)2 and (PhTe)2 caused alterations on the homeostasis of the glutamatergic system at the pre-synaptic level. These alterations were age-, concentration-, and compound-dependent. The maturity of rat brain is relevant for the glutamatergic system sensitivity to (PhSe)2 and (PhTe)2 .  相似文献   

8.
[14C]EDA was accumulated by slices of adult rat cerebral cortex, although the tissue:medium ratios achieved were very much lower than those for GABA. EDA uptake was temperature dependent and appeared to take place by both sodium dependent and sodium independent mechanisms. Kinetic analysis of the uptake revealed a major low affinity component with an apparent Km of 1.11 ± 0.05 mM and a Vmax of 9.8 ± 0.2 μmol/hg wet wt, with a second site of Km about 20 μM but a 50 fold lower Vmax. Inhibition studies indicate that EDA may be transported in part by the ‘small basic’ amino acid transport system and in part by polyamine systems shown to be present in CNS tissue. High levels of displaceable binding of radioactive EDA to glass-fibre filters were observed; studies using [14C]EDA may be complicated by binding to tissue macromolecules. Potassium stimulated, calcium dependent release of radioactivity from brain slices labelled with [14C]EDA in the presence of sodium ions was observed. Extracellular EDA stimulated the release of [3H]GABA and [3H]beta-alanine from preloaded slices, although GABA and beta-alanine did not stimulate [14C]EDA release. It appears that extracellular EDA can counterexchange with intracellular GABA or beta-alanine, but that EDA which is accumulated by the tissue may then be bound or move to pools not directly accessible to these amino acids. Ouabain released radioactivity from slices labelled by [14C]EDA in the presence of sodium but not from slices labelled in the absence of sodium. These results suggests that EDA is not acting simply as a substrate for GABA transport sites.  相似文献   

9.
Application of levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase, to greening plant tissues causes ALA to accumulate at the expense of chlorophyll. 4,6-Dioxoheptanoic acid (DA), which has been reported to be an effective inhibitor of this enzyme in animal systems, has a similar but more powerful effect on ALA and chlorophyll metabolism in greening leaves of Hordeum vulgare L. var. Larker. Both LA and DA also inhibit the uptake of [14C]amino acids into etiolated and greening barley leaves and reduce their incorporation into protein. Treatment of etiolated and greening leaves with these compounds results in the inhibition of 14CO2 evolution from labeled precursors, including amino and organic acids. Inhibition of 14CO2 evolution by these compounds is more effective in greening leaves than in etiolated leaves when [4-14C]ALA or [1-14C]glutamate are employed as precursors. Both LA and DA also inhibit the uptake and increase the incorporation of 32Pi into organophosphorus by etiolated barley leaves. These results indicate that LA and DA have more far-reaching effects upon plant metabolism than was previously believed.  相似文献   

10.
[14C]GABA is taken up by rat brain synaptosomes via a high affinity, Na+-dependent process. Subsequent addition of depolarizing levels of potassium (56.2 MM) or veratridine (100 μM) stimulates the release of synaptosomal [14C]GABA by a process which is sensitive to the external concentration of divalent cations such as Ca2+, Mg2+, and Mn2+. However, the relatively smaller amount of [14C]GABA taken up by synaptosomes in the absence of Na+ is not released from synaptosomes by Ca2+ -dependent, K +-stimulation. [14C]DABA, a competitive inhibitor of synaptosomal uptake of GABA (Iversen & Johnson , 1971) is also taken up by synaptosomal fractions via a Na + -dependent process; and is subsequently released by Ca2+ -dependent, K+-stimulation. On the other hand, [14C]β-alanine, a purported blocker of glial uptake systems for GABA (Schon & Kelly , 1974) is a poor competitor of GABA uptake into synaptosomes. Comparatively small amounts of [14C] β-alanine are taken up by synaptosomes and no significant amount is released by Ca2+ -dependent, K+-stimulation. These data suggest that entry of [14C]GABA into a releasable pool requires external Na+ ions and maximal evoked release of [14C]GABA from the synaptosomal pool requires external Ca2+ ions. The GABA analogue, DABA, is apparently successful in entering the same or similar synaptosomal pool. The GABA analogue, β-alanine, is not. None of the compounds or conditions studied were found to simultaneously affect both uptake and release processes. Compounds which stimulated release (veratridine) or inhibited release (magnesium) were found to have minimal effect on synaptosomal uptake. Likewise compounds (DABA) or conditions (Na+-free medium) which inhibited uptake, had little effect on release.  相似文献   

11.
Restricted permeability of rat liver for glutamate and succinate   总被引:13,自引:13,他引:0  
1. When rat liver slices were incubated aerobically with [U-14C]glutamate the concentration of 14C within the slices remained lower (about 50%) than in the medium. The maximal concentration of 14C in the liver was reached within minutes. In rat kidney-cortex slices by contrast, 14C reached concentrations more than six times those of the medium. 2. In both liver and kidney 14C appeared in the respiratory CO2, indicating penetration of glutamate carbon into the mitochondria. In kidney slices the rate of glutamate oxidation per unit weight was about five times that in liver slices. 3. Taking into account the conversion of glutamate into glucose that occurs in the kidney but not in the liver, the flux rates of glutamate through the kidney were calculated to be about 15 times those through the liver when the external glutamate concentration was 5mm. 4. Anaerobically the glutamate concentrations in medium and tissue rapidly became equal in both liver and kidney. Thus the maintenance of concentration gradients depended on the expenditure of energy. 5. [U-14C]Succinate behaved similarly to glutamate. [U-14C]Serine was taken up more rapidly by the kidney than by the liver slices, but the concentrations reached in the liver did not remain below those of the medium. [14C]Urea was distributed evenly between medium and tissue water. 6. Incubation of liver slices with [3H]inulin indicated an extracellular space of liver slices of 26%. 7. When glutamate was generated within liver slices or the perfused liver on addition of oxaloacetate, pyruvate and a source of nitrogen, the concentration of glutamate in the tissue after 1hr. was 70–97 times that in the medium. Thus the exit of glutamate from the liver cell, like its entry, is restricted. This is borne out by measurements of the specific activity of extra- and intra-cellular glutamate on addition of [U-14C]glutamate medium. 8. Liver homogenates removed added glutamate and dicarboxylic acids 20–30 times as fast as did the perfused liver. 9. It is concluded that a major permeability barrier restricts the entry and exit through the outer liver cell membrane.  相似文献   

12.
Glutamate, the main excitatory neurotransmitter in the mammalian central nervous system (CNS), plays important role in brain physiological and pathological events. Quinolinic acid (QA) is a glutamatergic agent that induces seizures and is involved in the etiology of epilepsy. Guanine-based purines (GBPs) (guanosine and GMP) have been shown to exert neuroprotective effects against glutamatergic excitotoxic events. In this study, the influence of QA and GBPs on synaptosomal glutamate release and uptake in rats was investigated. We had previously demonstrated that QA “in vitro” stimulates synaptosomal L-[3H]glutamate release. In this work, we show that i.c.v. QA administration induced seizures in rats and was able to stimulate synaptosomal L-[3H]glutamate release. This in vivo neurochemical effect was prevented by i.p. guanosine only when this nucleoside prevented QA-induced seizures. I.c.v. QA did not affect synaptosomal L-[3H]glutamate uptake. These data provided new evidence on the role of QA and GBPs on glutamatergic system in rat brain.  相似文献   

13.
Abstract— To study the release of dopamine (DA) evoked in vivo from the caudate nucleus, a push-pull cannula was inserted into the head of the caudate nucleus of cats anaesthetised with pentobarbitone sodium (Nembutal), and the tissue in the vicinity of the cannula tip was continuously irrigated with either l -[14C]tyrosine or DL-[14C]3,4-dihydroxyphenylala-nine (DOPA). The contents of [14C]DA and of the [14C]acidic metabolites in the perfusates were determined after separation from the labelled precursors by column chromatography, TLC and solvent partition. During perfusion with radioactive tyrosine, only small quantities of [14C]DA appeared in the effluent while the concentrations of the [14C]acidic metabolites gradually increased during the course of the experiment. When [14C]DOPA was substituted for [14C]tyrosine, the proportion of precursor that was converted to DA and released into the effluent as the amine or as its acidic metabolites was increased ten-fold. In an attempt to increase the resting release of [14C]DA, D-amphetamine, tropolone or pheniprazine were individually added to the perfusion fluid. Each drug increased the content of [14C]DA in the perfusate, but the enhanced release was maintained only when pheniprazine was added during perfusion with [14C]DOPA. Stimulation of the rostral substantia nigra (A5-5) and the medial forebrain bundle caused, in a majority of experiments, a two-to five-fold increase in the concentration of labelled DA in the effluent. Stimulation of the substantia nigra at A4-0 did not enhance the release of [14C]DA from the caudate nucleus but did enhance the release from the putamen. Since the increase in the output of [14C]DA was independent of changes in the output of labelled acidic metabolites, the evoked release was apparently not attributable to changes in extracellular fluid dynamics.  相似文献   

14.
The binding of [3H]SCH 23390 to dopamine (DA) D1-receptors was measured in the nucleus accumbens of rats treated chronically with desipramine for 14 days. DA D1 — and D2-receptor binding using [3H]SCH 23390 and [3H]spiperone, respectively as ligands, was determined in rats treated for 28 days. NeitherB max norK d values were influenced by chronic desipramine treatment. In addition, chronic desipramine treatment (28 days) did not influence the dose dependent, quinpirole (10–1000 nM)-mediated inhibition of the electrically stimulated release of [3H]DA and [14C]ACh from nucleus accumbens slices or the dose dependent increase in [3H]DA release and decrease in [14C]ACh release in the presence of 1 and 10 M nomifensine. Therefore, our results suggest that the effect of chronic antidepressant treatment cannot be attributed to changes in either DA D11-or D2-receptor binding or DA D2-receptor function in the nucleus accumbens.  相似文献   

15.
Dopamine (DA) D2 receptor-mediated inhibition of the K+-stimulated release of [14C]acetylcholine (ACh) from prelabeled rat dorsomedial nucleus accumbens slices was found to be 1.7 times greater than that observed in dorsorostral and ventromedial slices. This observation is consistent with the 1.9 fold higher DA D2 receptor density found in the dorsomedial area. In contrast, there were no differences in the DA D2 receptor-mediated effects on [3H]DA release in these areas. In addition, DA D2 receptor-mediated effects on [3H]DA and [14C]ACh release could not be demonstrated in the ventrorostral part of the nucleus accumbens consistent with the fact that DA D2 receptors were barely detectable in this area. The results suggest that cholinergic terminals in the dorsomedial part of the nucleus accumbens are under greater inhibitory DA control than in other areas of the nucleus accumbens.  相似文献   

16.
Slices from the guinea-pig olfactory cortex were incubated in the medium containing [14C]glutamate and release of radioactive compounds was subsequently studied in the standard or high potassium media or during repetitive stimulation of the lateral olfactory tract (LOT) while electrical activity of the tissue was monitored. In 50 mm -potassium concentration, the pre- and postsynaptic potentials were completely suppressed and effluxes of total 14C and [14C]glutamate increased. No significant increase in [14C]glutamine was found. When Ca2+ concentration was reduced from 2·4 to 0·12 mm , the postsynaptic potential disappeared and release of [14C]glutamate in 50 mm -potassium decreased to about a third of that in 2·4 mm -Ca2+. Repetitive LOT stimulation enhanced release of total 14C in thinner slices but caused no significant increase in [14C]glutamate efflux. These findings were discussed in relation to the possibility that glutamate is a mediator between the LOT fibres and cortical neurons.  相似文献   

17.
Abstract: The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 µmol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 µM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 µM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 µM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration. [3H]ACh release from striatal slices could not be detected when samples were superfused with nicotine but was measurable when tissues were incubated with nicotine. The release of [3H]ACh from slices from nicotine-injected rats was significantly (p < 0.05) less than release from controls and decreased to 36, 83, and 77% of control values following incubation with 1, 10, or 100 µM nicotine, respectively. This decreased [3H]ACh release could not be attributed to methodological differences because slices from nicotine-injected rats incubated with nicotine exhibited an increased [3H]DA release, similar to results from superfusion studies. In addition, it is unlikely that the decreased release of [3H]ACh from striatal slices from nicotine-injected rats was secondary to increased DA release because [3H]ACh release from slices from hippocampus, which is not tonically inhibited by DA, also decreased significantly (p < 0.05) in response to nicotine; hippocampal slices from nicotine-injected rats incubated with 1 and 10 µM nicotine decreased to 42 and 70%, respectively, of release from slices from saline-injected animals. Results indicate that the chronic administration of nicotine increases the ability of nicotine to induce the release of [3H]DA and [3H]5-HT and decreases the ability of nicotine to evoke the release of [3H]ACh but does not alter the nicotine-induced release of [3H]NE from brain slices.  相似文献   

18.
Abstract: KCI (20–100 mM) and W-methyl-D-aspartate (NMDA, 100–1,000 μM) produce concomitant concentration-dependent increases in the release of previously captured [14C]acetylcholine and [3H]spermidine from rat striatal slices in vitro. The effects of NMDA (300μM) on striatal [14C]acetylcholine and [3H]spermidine release were blocked with equal potencies by the competitive NMDA antagonist CGP 37849, the glycine site antagonist L-689,560, and the NMDA channel blocker dizocilpine. In contrast, although NMDA-evoked [14C]acetylcholine release was antagonized by ifenprodil (IC50= 5.3 μM) and MgCl2, (IC50= 200 μM), neither compound antagonized the NMDA-evoked release of [3H]spermidine at concentrations up to 100 μM (ifenprodil) or 1 mM (MgCl2). Distinct NMDA receptor subtypes with different sensitivities to magnesium and ifenprodil therefore exist in the rat striaturn.  相似文献   

19.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.  相似文献   

20.
The release of previously accumulated [3H]taurine and [14C]GABA from crude synaptosomal (P2) fractions isolated from rat cerebral cortex was studied using a superfusion system. The spontaneous efflux of [3H]taurine and [14C]GABA was stimulated by elevated concentrations of K+ (15–133 mM) in a concentration-dependent manner. This K+-stimulated release of [14C]GABA but not of [3H]taurine was enhanced in the presence of Ca2+. However, addition of 3 mM Ca2+ to the superfusion medium in the presence of the ionophore A 23187 resulted in a stimulation of the release of both [3H]taurine and [14C]GABA. These results are discussed in connection with the cellular localization of tourine in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号