首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of sulphate into roots of barley seedlings is highly sensitive to phenylglyoxal (PhG), an arginine-binding reagent. Uptake was inhibited by >80% by a 1-h pre-treatment of roots with 0.45 mol · m–3 PhG. Inhibition was maximal in pre-treatment solutions buffered between pH 4.5 and 6.5. Phosphate uptake, measured simultaneously by double-labelling uptake solutions with 32P and 35S, was less susceptible to inhibition by PhG, particularly at pH <6.5, and was completely insensitive to the less permeant reagent p-hydroxyphenylglyoxal (OH-PhG) administered at 1 mol · m–3 at pH at 5.0 or 8.2; sulphate uptake was inhibited in -S plants by 90% by OH-PhG-treatment. Root respiration in young root segments was unaffected by OH-PhG pre-treatment for 1 h and inhibited by only 17% after 90 min pre-treatment. The uptake of both ions was inhibited by the dithiol-specific reagent, phenylarsine oxide even after short exposures (0.5–5.0 min). Sulphate uptake was more severely inhibited than that of phosphate, but in both cases inhibition could be substantially reversed by 5 min washing of treated roots by 5 mol · m–3 dithioerythritol. After longer pre-treatment (50 min) with phenylarsine oxide, inhibition of the ion fluxes was not relieved by washing with dithioerythritol. Inhibition of sulphate influx by PhG was completely reversed by washing the roots for 24 h with culture solution lacking the inhibitor. The reversal was dependent on protein synthesis; less than 20% recovery was seen in the presence of 50 mmol · m–3 cycloheximide. Sulphate uptake declined rapidly when -S roots were treated with cycloheximide. In the same roots the phosphate influx was little affected, small significant inhibitions being seen only after 4 h of treatment. Respiration was depressed by only 20% in apical and by 31% in basal root segments by cycloheximide pre-treatment for 2 h. Similar rates of collapse of the sulphate uptake and insensitivity of phosphate uptake were seen when protein synthesis was inhibited by azetidine carboxylic acid, p-fluorophenylalanine and puromycin. Considering the effects of all of the protein-synthesis inhibitors together leads to the conclusion that the sulphate transporter itself, or some essential sub-component of the uptake system, turns over rapidly with a half-time of about 2.5 h. The turnover of the phosphate transporter is evidently much slower. The results are discussed in relation to strategies for identifying the transport proteins and to the regulation of transporter activity during nutrient stress.Abbreviations CAP chloramphenicol - CHM cycloheximide - DTE dithioerythritol - OH-PhG p-hydroxyphenylglyoxal - PhAsO phenylarsine - PhG phenylglyoxal Paper dedicated to the memory of the late Ken Treharne who did much to encourage this collaboration.D.T.C. gratefully acknowledges a fellowship provided by Le Ministére des Etrangers during his stay in Montpellier.  相似文献   

2.
    
The equilibrium geometry, electronic structure and optical properties of thiourea S, S-dioxide crystal have been studied using DFT within generalized gradient approximation (GGA) and the local density approximation (LDA), implemented using ultrasoft pseudo-potentials. The optimum bulk geometry is in good agreement with crystallographic data. An analysis of electronic structure, charge and bond order is presented. The energy gap of thiourea dioxide with GGA and LDA calculation is 3.217 or 3.210 eV, respectively, indicating that the compound is an insulator. The calculated absorption spectrum shows a number of absorption peaks, which are believed to be associated with different exciton states, in the fundamental absorption region.  相似文献   

3.
不同富硒土壤对烤烟生长及硒吸收转运的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
以烤烟品种‘云烟87’为材料,采用盆栽试验研究安徽池州烟区不同全硒含量土壤(0.30、0.45、1.00、1.75mg·kg-1)对烤烟生长发育以及硒吸收和转运的影响。结果显示:(1)土壤硒含量≤1.00mg·kg-1时能够促进烤烟生长,而土壤硒含量≥1.75mg·kg-1则抑制烤烟的生长。(2)土壤硒含量的增加能够显著提高烤烟根系、茎秆、叶片的硒含量,烟株各部位的硒含量呈现根系叶片茎秆的特点,且根系硒含量是叶片的2~3倍,叶片硒含量则是茎秆的3~4倍。(3)土壤硒含量由0.30mg·kg-1增加至1.75mg·kg-1时,烟株对硒的吸收系数由1.08显著降低至0.36,次级转运系数则由2.84显著升高至4.03,即土壤硒含量增加降低了根系吸收硒的效率,但却增加了硒在叶中的转运和相对累积量。(4)烤烟整株硒的富集量在土壤硒含量为1.00mg·kg-1时达到最大,每株达到72μg。研究表明,在安徽池州烟区的富硒土壤(0.45~1.00 mg·kg-1)上能够生产出富硒(0.15~0.23 mg·kg-1)烟叶,不需要额外添加外源硒,既可以减少生产成本,也能够避免造成水土污染。  相似文献   

4.
    
We report an approach for the fabrication of CuIn(S,Se)2‐based photovoltaic devices from hydrazinium precursors in non‐hydrazine solvents, specifically a ethanolamine/dimethyl sulfoxide (EA/DMSO) mixture. For the first time, both Cu hydrazinium precursor and Cu‐In hydrazinium precursor are found with good solubility in non‐hydrazine solvents, producing molecular‐level blending of metal precursors. Sulfur loss in Cu hydrazinium precursor is compensated for by either introduction of excessive S/Se or the formation of S/Se‐bridged Cu‐In compounds. The success of dissolving Cu‐In hydrazinium precursor is ascribed to the coordinated S group and strong intramolecular interaction within non‐hydrazine solvents. X‐ray diffraction (XRD) and Raman characterization indicate the formation of the CuIn(S,Se)2 phase after annealing. Through introducing different amounts of excess S/Se, the ratio between CuInS2 and CuInSe2, as well as the morphology of the resulted CuIn(S,Se)2 film can be controlled. Optimized devices exhibit a power conversion efficiency of 3.8% with a CISS absorber layer of only around 300 nm thickness, which is comparable to N2H4‐based devices of similar thickness.  相似文献   

5.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   

6.
Isolated roots of Lycopersicon esculentum Mill., cultured in axenic conditions were starved of sulphate or phosphate, and uptake capacities for the respective oxyanion-transport systems were observed for several days after sulphate or phosphate withdrawal. Sulphate-uptake capacity of the intact roots, measured in a 20-min period, increased from a control level of 100 nmol · g–1 · h–1 to 1100 nmol · g–1 · h–1 in 10 d, and phosphate-uptake capacity increased from 500 to 1400 nmol · g–1 · h–1 over 4 d. Newly synthesised polypeptides of these root cultures were pulse-labelled in vivo for 2 h, by adding [3H]leucine to the culture medium. The tissue was immediately homogenised and soluble and membrane fractions were prepared. A highly purified plasma-membrane fraction was separated from the crude microsomal membrane fraction using an aqueous two-phase partitioning technique. All fractions were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. A 28-kilodalton (kDa) soluble polypeptide, and 36-, 43-, and 47-kDa plasma-membrane polypeptides were observed to have increased labelling after 4 d of sulphate deprivation. Longer periods resulted in additional polypeptides with increased [3H]leucine incorporation. The synthesis of a 25-kDa membrane polypeptide and a 65-kDa soluble polypeptide was increased after 4 d of phosphate deprivation. Two-dimensional electrophoresis afforded greater resolution of the plasmamembrane polypeptides, confirming increased synthesis of the 36-kDa polypeptide and the presence of the 28-kDa polypeptide in the plasma-membrane preparation from sulphate-starved roots. These polypeptides were also observed in protein-stained two-dimensional gels as low-abundant protein components of the plasmamembrane fraction. It is suggested that the 36-kDa polypeptide may be a component of the plasma-membrane sulphate-transport system and that the 25-kDa polypeptide may be a component of a phosphate-transport system.Abbreviations kDa kilodalton(s) - PAGE polyacrylamide gel electrophoresis - pI isoelectric point - SDS Sodium dodecyl sulphate This work was supported by the Agricultural and Food Research Council via grants-in-aid to Long Ashton Research Station. We are also grateful for discussions with our colleagues D.T. Clarkson (LARS) and J.-C. Davidian (ENSA/INRA, Montpellier).  相似文献   

7.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   

8.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

9.
Citrate uptake into barley (Hordeum vulgare L.) mesophyll vacuoles was found to be saturable with a K m of about 200 M. Uptake appears to occur via the citrate3- form, as indicated by concentration-dependent uptake studies at different pHs. Free citrate and not the Mg-citrate complex was taken up by the vacuoles, even though slow transport of the Mg complex could not be excluded. Citrate transport into vacuoles was competitively inhibited by malate (K i=0.68 mM). Various organic acids and protein-modifying agents affected the uptake of malate and citrate to a similar extent. These results indicate that both organic acids cross the tonoplast by means of the same carrier. Accumulation of citrate was ATP-dependent and could be inhibited by ionophores. Bovine serum albumin strongly stimulated citrate uptake, but other proteins tested did not show a similar stimulatory effect.Abbreviation BSA bovine serum albumin We wish to thank Esther Vogt for her help with the experiments and Professor N. Amrhein (ETH, Zürich, Switzerland) and Dr. Michael Kertesz (ETH, Zürich) for helpful discussions. This work was supported by the Swiss National Foundation grant No. 31-25196.88.  相似文献   

10.
The characteristics of sulphate uptake into right-side-out plasma-membrane vesicles isolated from roots of Brassica napus L., Metzger, cv. Drakkar, and purified by aqueous polymer two-phase partitioning, were investigated. Sulphate uptake into the vesicles was driven by an artificially imposed pH gradient (acid outside), and could be observed for 5–10 min before a plateau was reached and no further net uptake occurred. The uptake was partially inhibited in the presence of depolarizing agents and little uptake was observed in the absence of an imposed pH gradient. Uptake was strongly pH-dependent, being greatest at more acidic pH. After imposition of a pH gradient, the capacity for uptake decreased slowly (t1/2>10 min). The uptake had a high-affinity component which was strongly dependent on the external proton concentration (K m=10μM at pH 5.0, 64 μM at pH 6.5). The K m for protons varied from 0.4–1.9 μM as the sulphate concentration was reduced from 33 to 1 μM. A low-affinity component was observed which could be resolved at low temperatures (0 °C). Microsomal membranes that partitioned into the lower phase of the two-phase system gave no indication of high-affinity sulphate transport. Sulphate uptake into plasma-membrane vesicles isolated from sulphur-starved plant material was approximately twofold greater than that observed in those isolated from sulphate-fed plant material. Isolated vesicles therefore mirror the well-known in-vivo response of roots, indicating an increase in the number of transporters to be, at least in part, the underlying cause of derepression.  相似文献   

11.
Iron-sulfur (Fe-S) clusters are important prosthetic groups in all organisms. The biosynthesis of Fe-S clusters has been studied extensively in bacteria and yeast. By contrast, much remains to be discovered about Fe-S cluster biogenesis in higher plants. Plant plastids are known to make their own Fe-S clusters. Plastid Fe-S proteins are involved in essential metabolic pathways, such as photosynthesis, nitrogen and sulfur assimilation, protein import, and chlorophyll transformation. This review aims to summarize the roles of Fe-S proteins in essential metabolic pathways and to give an overview of the latest findings on plastidic Fe-S assembly. The plastidic Fe-S biosynthetic machinery contains many homologues of bacterial mobilization of sulfur (SUF) proteins, but there are additional components and properties that may be plant-specific. These additional features could make the plastidic machinery more suitable for assembling Fe-S clusters in the presence of oxygen, and may enable it to be regulated in response to oxidative stress, iron status and light.  相似文献   

12.
To investigate whether adaptive changes of glutamatergic transmission underlie dysfunction of the cholinergic system in experimental parkinsonism, the effects of group-II metabotropic glutamate and NMDA receptor ligands on acetylcholine release was studied in striatal slices and synaptosomes obtained from naive rats, 6-hydroxydopamine hemi-lesioned rats and 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa (L-DOPA) plus benserazide (non-dyskinetic). Group-II metabotropic glutamate receptor agonists LY354740, DCG-IV and L-CCG-I inhibited the electrically-evoked endogenous acetylcholine release from slices, while NMDA facilitated it. LY354740 also inhibited K+-evoked acetylcholine release from synaptosomes. LY354740-induced inhibition was prevented by the group-II metabotropic glutamate receptor antagonist LY341495. In hemi-parkinsonian rats, sensitivity towards LY354740 was reduced while that to NMDA was enhanced in the lesioned (denervated) compared with unlesioned striatum. Moreover, dizocilpine inhibited acetylcholine release in the lesioned compared with unlesioned striatum. Chronic treatment with L-DOPA normalized sensitivity towards glutamatergic agonists. We conclude that striatal dopamine denervation results in plastic changes at group-II metabotropic glutamate and NMDA receptors that may shift glutamatergic control of acetylcholine release towards facilitation. From a clinical perspective, L-DOPA and NMDA antagonists appear effective in counteracting overactivity of striatal cholinergic interneurones associated with Parkinson's disease.  相似文献   

13.
    
As a wide‐bandgap semiconductor, titanium dioxide (TiO2) with a porous structure has proven useful in dye‐sensitized solar cells, but its application in low‐cost, high‐efficiency inorganic photovoltaic devices based on materials such as Cu(InGa)Se2 or Cu2ZnSnS4 is limited. Here, a thin film made from solution‐processed TiO2 nanocrystals is demonstrated as an alternative to intrinsic zinc oxide (i‐ZnO) as the window layer of CuInSxSe1?x solar cells. The as‐synthesized, well‐dispersed, 6 nm TiO2 nanocrystals are assembled into thin films with controllable thicknesses of 40, 80, and 160 nm. The TiO2 nanocrystal films with thicknesses of 40 and 80 nm exhibit conversion efficiencies (6.2% and 6.33%, respectively) that are comparable to that of a layer of the typical sputtered i‐ZnO (6.42%). The conversion efficiency of the devices with a TiO2 thickness of 160 nm decreases to 2.2%, owing to the large series resistance. A 9‐hour reaction time leads to aggregated nanoparticles with a much‐lower efficiency (2%) than that of the well‐dispersed TiO2 nanoparticles prepared using a 15‐hour reaction time. Under optimized conditions, the champion TiO2 nanocrystal‐film‐based device shows even higher efficiency (9.2%) than a control device employing a typical i‐ZnO film (8.6%).  相似文献   

14.
The role of phosphorylation in sugar transport in baker's yeast was studied using 2-deoxy-d-glucose. In wild-type baker's yeast, 2-deoxy-d-glucose is accumulated as a mixture of the free sugar and several derivatives. Pool labeling experiments, designed to determine the temporal order of appearance of labeled 2-deoxy-d-glucose in the intracellular pools, have confirmed previous reports that 2-deoxy-d-glucose first appears in the sugar phosphate pool. Such results are consistent with a transport associated phosphorylation mechanism. Since wild-type yeasts contain three enzymes which could participate in such a process, hexokinase isozymes PI and PII and glucokinase, pool labeling experiments were carried out with single-kinase mutant strains containing only one of these enzymes. Results similar to those for wild-type strains were obtained for all three single-kinase strains, suggesting that if transport associated phosphorylation does occur in baker's yeast, it is not a function of the specific kinase present in the cell. While the results of the pool labeling experiments are consistent with a transport associated phosphorylation mechanism for 2-deoxy-d-glucose, caution is urged in interpreting the results of experiments with whole cells where problems of compartmentation and multiple pools are difficult to assess.  相似文献   

15.
Hans Peter Getz 《Planta》1991,185(2):261-268
Sucrose uptake into tonoplast vesicles, which were prepared from red beet (Beta vulgaris L.) vacuoles isolated by two different methods, was stimulated by MgATP. Using the same medium as for osmotic disruption of vacuoles, membrane vesicles were prepared from tissue homogenates of dormant red beet roots and separated by high-speed centrifugation through a discontinuous dextran gradient. A low-density microsomal fraction highly enriched in tonoplast vesicles could be further purified from contaminating ER vesicles by inclusion of 5 mM MgCl2 in the homogenization medium. These vesicles were able to transport sucrose in an ATP-dependent manner against a concentration gradient, whereas vesicles from regions of other densities lacked this feature, indicating that ATP stimulation of sucrose uptake took place only at the tonoplast membrane. Sucrose uptake was optimal at pH 7 in the presence of MgATP and could be stimulated by superimposed pH gradients (vesicle interior acidic) in the absence of MgATP, which is consistent with the operation of a sucrose/H+-antiporter at the tonoplast. Tonoplast vesicles, obtained in high yield from tissue homogenates of red beet roots, exhibited sugar-uptake characteristics comparable to those of intact vacuoles; these characteristics included similarities in K m (1.7 mM), sensitivity to inhibitors and specificity for sucrose.Many experiments were carried out at the Experiment Station of the HSPA, Aiea, Hawaii and financed by an NSF grant to Dr. Maretzki and Mrs. M. Thom.  相似文献   

16.
    
Photoheterotrophic and heterotrophic suspension cultures of tobacco (Nicotiana tabacum L.) were grown with 1 mM glutathione (reduced; GSH) as sole source of sulfur. Addition of sulfate to both cultures did not alter the rate of exponential growth, but affected the removal of GSH and sulfate in different ways. In photoheterotrophic suspensions, addition of sulfate caused a decline in the net uptake of GSH, whereas sulfate was taken up by the green cells immediately. In heterotrophic suspensions, however, addition of sulfate did not affect the net uptake of GSH and sulfate was only taken up by the cells after the GSH supply in the medium had been exhausted. Apparently, GSH uptake in photoheterotrophic cells is inhibited by sulfate, whereas sulfate uptake is inhibited by GSH in heterotrophic cells. The differences in the effect of GSH on sulfate uptake in photoheterotrophic and heterotrophic tobacco suspensions cannot be attributed to differences in the kinetic properties of sulfate carriers. In short-time transport experiments, both cultures took up sulfate almost entirely by an active-transport system as shown by experiments with metabolic inhibitors; sulfate transport of both cultures obeyed monophasic Michaelis-Menten kinetics with similar app. Km (photoheterotrophic cells: 16.0±2.0 M; heterotrophic cells: 11.8±1.8 M) and Vmax (photoheterotrophic cells: 323±50 nmol·min-1·g-1 dry weight; heterotrophic cells: 233±3 nmol·min-1·g-1 dry weight). Temperature- and pH-dependence of sulfate transport showed almost identical patterns. However, the cultures exhibited remarkable differences in the inhibition of sulfur influx by GSH in short-time transport experiments. Whereas 1 mM GSH inhibited sulfate transport into heterotrophic tobacco cells completely, sulfate transport into photoheterotrophic cells proceeded at more than two-thirds of its maximum velocity at this GSH concentration. The mode of action of GSH on sulfate transport in chloroplast-free tobacco cell does not appear to be direct: a 14-h exposure to 1 mM GSH was found to be necessary to completely block sulfate transport; a 4-h time of exposure did not affect this process. Consequently, glutathione does not seem to be a product of sulfur metabolism acting on sulfate-carrier entities by negative feedback control. When transferred to the whole plant, the observed differences in sulfate and glutathione influx into green and chloroplast-free cells may be interpreted as a regulatory device to prevent the uptake of excess sulfate by plants.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DNP dinitrophenol - DW dry weight - FW fresh weight - GSH reduced glutathione  相似文献   

17.
硫化氢抗大鼠动脉粥样硬化作用研究   总被引:1,自引:0,他引:1  
目的:探讨硫化氢(H2S)对大鼠动脉粥样硬化(AS)的作用及其机制。方法:体重(210±10)g的健康雄性SD大鼠125只,随机分为:对照组、AS模型组、AS+低剂量NaHS(2.8μmol/(kg.d))组、AS+中剂量NaHS(14μmol/(kg.d))组及AS+高剂量NaHS(28μmol/(kg.d))组。采用高脂饲料加大剂量VitD3注射复制大鼠AS模型。NaHS腹腔注射,连续用药12周。分别在喂养前及喂养后3、6、9、12周各处死动物。用生化分析仪检测血脂,去蛋白法检测血浆硫化氢,HE染色观察血管病理损伤程度及病变评分,免疫组化法检测血管组织中血管内皮生长因子(VEGF)的表达。结果:与相同时期的对照组相比,AS模型组在喂养后3、6、9、12周,血清甘油三脂(TG)和胆固醇(TC)均明显升高;主动脉病变评分从第6周到12周明显增加(P0.01),并出现明显的动脉粥样硬化病变,表现为阳性区域的脂质斑块;血清H2S浓度明显降低,从喂养前的(44.98±2.06)μmol/L到第3、6、9、12周分别为(38.56±2.26),(32.96±2.38),(28.63±0.92),(23.55±0.92)μmol/L,并分别低于同时期各对照组的(44.72±0.85),(43.71±0.59),(41.96±0.97),(39.87±1.25)μmol/L(P0.01);血管组织中VEGF的表达明显增强(P0.01)。与模型组比较,低剂量NaHS组,各指标均无明显变化;中剂量NaHS组大鼠血清H2S含量于第6周开始明显高于模型组(36.13±0.73)vs(32.96±2.38)μmol/L,P0.05;于9、12周时,分别为(33.07±1.14)vs(28.63±0.92)μmol/L,(30.16±0.62)vs(23.55±0.92)μmol/L,P0.01;高剂量NaHS组大鼠血中H2S浓度于第3周开始到12周,分别为:(41.25±0.80),(38.71±0.46),(35.31±0.62),(33.38±0.78)μmol/L,均明显高于模型组(P0.01);中、高剂量NaHS组血清TC均从第3周开始到12周明显降低(P0.01),TG分别从第3、第6周开始到12周明显降低(P0.05,P0.01),血管组织病变评分与VEGF的表达均于第6周开始到12周明显降低(P0.05)。相关分析显示血清中硫化氢的浓度与动脉粥样硬化的病变评分及血管VEGF的表达呈明显的负相关(r=-0.917,P0.01,r=-0.885,P0.01),而与血清甘油三脂和胆固醇之间无显著相关性。结论:动脉粥样硬化病变的形成与发展与内源性硫化氢的降低密切相关,补充外源性H2S可提高动脉粥样硬化大鼠血清中硫化氢浓度,减轻血管损伤程度,抑制VEGF的表达。  相似文献   

18.
    
PERV is integrated into the genome of all pigs. PERV‐A and PERV‐B are polytropic and can productively infect human cell lines, whereas PERV‐C is ecotropic. Recombinant PERV‐A/C can infect human cells and exhibits high titer replication. Therefore, use of pigs for human xenotransplantation raises concerns about the risks of transfer of this infectious agent from donors to xenotransplantation recipients. To establish strategies to inhibit PERV production from cells, in the present study, we investigated the mechanism of PERV budding and anti‐PERV activity of Tetherin/BST‐2. The results showed that DN mutants of WWP‐2, Tsg101, and Vps4A/B markedly reduced PERV production in human and porcine cell lines, suggesting that PERV budding uses these cellular factors and the cellular MVB sorting pathway as well as many other retroviruses. Moreover, PERV production was also reduced by human and porcine Tetherin/BST‐2. These data are useful for developing strategies to inhibit PERV production and may reduce the risk of PERV infection in xenotransplantation.  相似文献   

19.
    
Acetaminophen (APAP) is a widely used over-the-counter analgesic and antipyretic. It can cause hepatotoxicity. Recent studies demonstrated that hydrogen sulfide (H2S) exhibits cell protection in several cell types. This study was designed to investigate whether H 2S ameliorated APAP-induced acute liver injury and to elucidate its mechanisms. In this study, we analyzed the detailed biological and molecular processes of APAP-induced hepatotoxicity using a bioinformatics analysis, which showed that apoptosis and the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase pathway were confirmed to play critical roles in these processes. We further investigated the protective effects of H 2S on APAP-induced hepatotoxicity. In vivo, we observed that the exogenous supplement of H 2S ameliorated APAP-induced liver injury. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) systems were the endogenous pathway of H 2S. The expression of CBS/CSE was decreased in APAP-treated mice, while H 2S could significantly restore it. In addition, APAP-induced JNK activation was inhibited by H 2S in vivo. In vitro, H 2S abolished the active effects of APAP on caspase3, Bax, and Bcl-2 expressions as well as JNK phosphorylation in hepatocytes. It was found through flow cytometry that the amount of APAP-induced apoptotic hepatocytes was decreased in the presence of H 2S. In conclusion, our results suggested that H 2S attenuated APAP-induced apoptosis in hepatocytes through JNK/MAPK siganaling pathway.  相似文献   

20.
S/D灭活血浆内脂包膜病毒及病毒灭活血浆的研究   总被引:1,自引:0,他引:1  
研究磷酸三丁酯(TNBP)/Triton X-100对血浆内脂包膜病毒的灭活效果。用VSV病毒和Sindbis病毒作指示病毒,加入血浆后再加磷酸三丁酯/Triton X-100,观察病毒的滴度变化及对血浆蛋白的影响。结果发现终浓度各为1%的磷酸三丁酯/Triton X-100在60min内可以灭活血浆内的两种指示病毒,而血浆蛋白的组成和功能变化很小。经层折、超滤后血浆内磷酸三丁酯和Triton X-100的残余量分别低于5μg/ml,表明S/D处理血浆的安全性和治疗作用都很好,其制剂冰冻血浆或冻干血浆可用于临床治疗凝血因子缺乏症,或用作血容量扩张剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号