首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Copper metabolism in male Nagase analbuminaemic (NA) rats was compared with that in male Sprague Dawley (SD) rats fed purified diets containing either 5 or 100 mg Cu/kg diet. Dietary copper loading increased hepatic and kidney copper concentrations in both strains to the same extent, but baseline values were higher in the NA rats. There was no strain difference in true and apparent copper absorption nor in faecal endogenous and urinary copper excretion. NA rats had higher levels of radioactivity in kidneys at 2 hr after intraperitoneal administration of 64Cu. As based on the distribution of added 64Cu, about 70% of plasma copper appeared to be in the non-protein compartment in the NA rats, whereas in SD rats, it was only about 1%. It is concluded that the NA rats are able to maintain a relatively normal metabolism of copper, even after dietary copper challenge. In the NA rats, zinc concentrations in kidneys, liver and urinary zinc excretion were elevated when compared with SD rats. The high-copper diet did not affect tissue zinc concentrations and apparent zinc absorption in both strains of rats.  相似文献   

2.
The effect of dietary iron loading on biliary iron excretion was investigated with male Wistar rats aged 6 wk. The rats were fed purified diets with either 174 or 1740 mg FeSO4. 7H2O/kg diet and demineralized water for 6 wk. Blood haemoglobin, hematocrit, and iron concentrations in kidney and heart were not affected and iron concentrations in liver, spleen, and tibia were significantly raised after feeding the high-iron diet. The high-iron diet did not raise biliary iron excretion, suggesting that biliary iron excretion does not play an important role in regulating iron metabolism in rat after dietary iron loading.  相似文献   

3.
Ethylmercuric chloride (EtHg), at the dose of 2.5 mg Hg/kg, was administered by gavage every other day to pregnant rats from d 6 to 20 of gestation. On the 21st day of gestation, females were sacrificed to allow the evaluation of embryotoxicity and take the material for analytical determinations. Copper, zinc, iron, and calcium were determined by AAS in liver, kidneys, brain, intestines of fetal and pregnant female rats, as well as in maternal spleen, whole blood, placenta, and fetal carcass. Ethylmercury caused a decrease of the body weight gain during gestation and diminution of relative liver weight of intoxicated females. This compound also induced fetotoxic effects, evidenced by slight diminution of the length as well as the weight of fetuses. It was found that the effect of EtHg on the levels of endogenous metals is different in females and fetuses. In pregnant females, EtHg administration resulted in a significant increase of copper levels in kidneys, liver, and spleen: and in the decrease of zinc concentration in the kidneys, but an increase in placenta and blood compared with pregnant controls. EtHg induced slight decrease of iron concentration in kidneys and intestinal wall of pregnant females. The concentrations of iron in liver and kidney and of zinc in whole blood and liver were lower in control pregnant rats than those in control non-pregnant females. In fetuses of EtHg-exposed mothers, increases in kidney zinc and liver calcium levels were found, whereas tissue copper and iron concentrations were the same as in controls.  相似文献   

4.
The concentrations of copper, iron, and zinc in the major organs of Wistar albino (Rattus norvegicus) and wild black rats (Rattus rattus) were measured by means of atomic absorption spectroscopy. The copper levels in the kidneys and liver of the Wistar albino rats (WARs) were significantly higher (p<0.05) than in the wild black rats (WBRs). There were no significant differences in the concentrations of zinc in the liver, lungs, kidneys, and brain between the two study groups, but zinc was significantly higher in the spleen (p<0.05) and lower in the heart (p<0.05) of WAR, compared to WBRs. Iron was significantly higher (p<0.05) in the heart and spleen of WBRs, compared to WARs.There were no extreme differences in the organ concentrations of trace elements between the two species, but, cumulatively, the WARs tend to have higher metallic concentrations in their system than the WBRs. The potential of these differences on the experimental results should not be overlooked and will serve as basis to further consider the complex interrelationships of these animals in their microenvironments and macroenvironments.  相似文献   

5.
The concentrations of copper, iron, and zinc in the major organs of Wistar albino (Rattus norvegicus) and wild black rats (Rattus rattus) were measured by means of atomic absorption spectroscopy. The copper levels in the kidneys and liver of the Wistar albino rats (WARs) were significantly higher (p<0.05) than in the wild black rats (WBRs). There were no significant differences in the concentrations of zinc in the liver, lungs, kidneys, and brain between the two study groups, but zinc was significantly higher in the spleen (p<0.05) and lower in the heart (p<0.05) of WAR, compared to WBRs. Iron was significantly higher (p<0.05) in the heart and spleen of WBRs, compared to WARs. There were no extreme differences in the organ concentrations of trace elements between the two species, but, cumulatively, the WARs tend to have higher metallic concentrations in their system than the WBRs. The potential of these differences on the experimental results should not be overlooked and will serve as basis to further consider the complex interrelationships of these animals in their microenvironments and macroenvironments.  相似文献   

6.
The effect of high arsenic intake on copper metabolism was investigated. Male rats aged 6 wk had free access to purified diets containing either 0 or 100 mg As/kg diet and demineralized water for a period of 2 wk. Arsenic was added to the diet in the form of NaAsO2. The high-arsenic diet decreased feed and water intake and body weight gain, but significantly increased liver weight. Kidney weight was not affected. Arsenic feeding drastically elevated kidney copper concentration, but significantly reduced copper concentration in plasma. Both true absorption and biliary excretion of copper were decreased significantly in rats fed the high-arsenic diet. True copper absorption was lowered essentially through the lower copper intake in the rats fed arsenic. It is speculated that arsenic feeding primarily leads to copper accumulation in the kidney, followed by a decrease in feed intake and thus in true, absolute copper absorption, a decrease in plasma copper concentration, and a decrease in biliary copper excretion.  相似文献   

7.
The response of copper metabolism to dietary copper challenge was investigated in jaundiced rats with elevated plasma concentrations of conjugated bilirubin as a result of impaired canicular transport of bilirubin glucuronides. Control and jaundiced rats were fed purified diets with either normal (64 μmol Cu/kg) or high (640 μmol Cu/kg) concentration of added copper. Copper loading produced a greater increase in hepatic copper concentrations in the jaundiced than in control rats. The greater dietary-copper-induced increase in hepatic copper in the jaundiced rats can be explained by the observed smaller rise in biliary copper excretion and a greater efficiency of dietary copper absorption. In individual rats, there was a positive relationship between hepatic copper concentrations and biliary copper concentrations. It is suggested that not the transport of copper from liver cells to bile but that from plasma to bile is diminished in the jaundiced rats. The elevated plasma copper concentrations in the jaundiced rats may support this suggestion.  相似文献   

8.
The present study was conducted to assess in rats the effects of oral aluminum (Al) exposure on calcium (Ca), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) accumulation and urinary excretion. Three groups of plug-positive Sprague-Dawley (SD) rats were given by gavage 0, 200, and 400 mg/kg/d of Al(OH)3 on gestational days 1–20. Three groups of nonpregnant female SD rats of the same age received Al(OH)3 by gavage at the same doses for 20 consecutive days. At the end of the treatment period, 24-h urine samples were collected for analysis of Al and essential elements. Subsequently, all animals were sacrificed and samples of liver, bone, spleen, kidneys, and brain were removed for metal analyses. With some exceptions, the urinary amounts of Al, Mn, and Cu excreted by pregnant animals as well as the urinary levels of Al excreted by nonpregnant rats were higher in the Al-treated groups than in the respective control groups. Although higher Al levels were found in the liver of pregnant rats, the concentrations of Al in the brain of these animals were lower than those found in the same tissues of nonpregnant rats. With regard to the essential elements, tissue accumulation was most affected in pregnant than in nonpregnant animals. In pregnant rats, the hepatic and renal concentrations of Ca, Mg, Mn, Cu, Zn, and Fe, as well as the levels of Ca in bone, and the concentrations of Cu in brain were significantly higher in the Al-exposed groups than in the control group. According to the current results, oral Al exposure during pregnancy can produce significant changes in the tissue distribution of a number of essential elements.  相似文献   

9.
目的分析不同周龄SD大鼠的脏器重量及其变化趋势,为评判药物毒性反应提供理论参考。方法分别选取试验第13、26、52、78和104周对照组动物脑、脾脏、心脏、肺脏、肝脏、肾脏、肾上腺、睾丸、卵巢的重量数据并分析。结果从13~104周SD雌鼠脑、脾脏、心脏、肺脏、肝脏、肾脏、肾上腺、卵巢的重量呈升高趋势。从13~104周SD雄鼠脑、脾脏、心脏、肺脏、肝脏、肾脏重量均重于雌鼠,但雌鼠肾上腺重量、脏体比和脏脑比均显著高于雄鼠。结论本研究首次在国内建立了符合我国实验动物现状的,不同周龄SD大鼠的脏器重量背景数据和参考值范围,并分析了不同周龄SD大鼠脏器重量变化趋势。  相似文献   

10.
The effects of low dietary rubidium on plasma biochemical parameters and mineral levels in tissues in rats were studied. Eighteen male Wistar rats, weighing about 40 g, were divided into two groups and fed the diets with or without supplemental rubidium (0.54 vs 8.12 mg/kg diet) for 11 wk. Compared to the rats fed the diet with supplemental rubidium, the animals fed the diet without rubidium supplementation had higher urea nitrogen in plasma; lower rubidium concentration in tissues; lower sodium in muscle; higher potassium in plasma, kidney and tibia, and lower potassium in testis; lower phosphorus in heart and spleen; lower calcium in spleen; higher magnesium in muscle and tibia; higher iron in muscle; lower zinc in plasma and testis; and lower copper in heart, liver, and spleen, and higher copper in kidney. These results suggest that rubidium concentration in tissues reflects rubidium intake, and that rubidium depletion affects mineral (sodium, potassium, phosphorus, calcium, magnesium, iron, zinc, and copper) status.  相似文献   

11.
The effect of riboflavin and (or) pyridoxine deficiency and repletion on tissue iron content was studied in rats. The iron content in liver, spleen, and kidney and plasma iron concentration of riboflavin deficient (RD) rats was lower, but hematocrit was not. In pyridoxine deficient (PD) rats versus control rats, the iron content in liver was significantly higher but not in spleen and kidney. In PD rats hematocrit was lower but plasma iron concentration was not. Although combined riboflavin and pyridoxine deficient (CD) rats had lower iron content in liver and spleen compared with control rats, these values were intermediate between those of RD rats and PD rats. After RD and PD rats were repleted, the iron content in liver, spleen, and kidney returned to that of control rats, and the hematological indices were improved significantly. These results suggest that riboflavin and pyridoxine deficiency may impair the absorption and utilization of iron and may result in altered tissue iron content.  相似文献   

12.
Mineral (phosphorus, sulfur, potassium, calcium, magnesium, iron, zinc, copper, and manganese) concentrations were measured in plasma, and several tissues from female Wistar rats (young: 3-wk-old; mature: 6-mo-old) were fed on a dietary regimen designed to study the combined or singular effects of age and dietary protein on mineral status. Three diets, respectively, contained 5, 15, and 20% of bovine milk casein. Nephrocalcinosis chemically diagnosed by increased calcium and phosphorus in kidney was prevented in rats fed a 5% protein diet. Renal calcium and phosphorus were more accumulated in young rats than mature rats. A 5% protein diet decreased hemoglobin and blood iron. The hepatic and splenic iron was increased by a 5% protein diet in mature rats but was not altered in young rats. Mature rats had higher iron in brain, lung, heart, liver, spleen, kidney, muscle, and tibia than young rats. A 5% protein diet decreased zinc in plasma and liver. Zinc in tibia was increased with dietary protein level in young rats but was not changed in mature rats. A 5% protein diet decreased copper concentration in plasma of young rats but not in mature rats. Mature rats had higher copper in plasma, blood, brain, lung, heart, liver, spleen, and kidney than young rats. With age, manganese concentration was increased in brain but decreased in lung, heart, liver, kidney, and muscle. These results suggest that the response to dietary protein regarding mineral status varies with age.  相似文献   

13.
A mixture of copper (Cu) (0.38 mg/kg), manganese (Mn) (0.038 mg/kg), and horseradish peroxidase (HRP) (5.0 mg/kg) was injected intravenously (iv) into mature Eisai hyperbilirubinemic rats (EHBRs) and Sprague-Dawley rats (SDRs). Bile was collected at 10-min intervals before and after the injection, under anesthesia. The liver, kidneys, and blood were removed 40 min after the injection. The serum-conjugated bilirubin concentration was 0.85 mg/dL in the EHBRs, but was below detection limits in the SDRs. The bile-reduced glutathione (GSH) concentration was much lower in the EHBRs (0.04 mg/mL) than in the SDRs (1.30 mg/mL). However, the hepatic GSH concentration was about 1.6 times higher in EHBRs (2.26 mg/g liver) than in SDRs (1.43 mg/g liver). The low, excretion of biliary GSH was not caused by the activity of GGT in the liver, since there was no significant difference in the activity between the two groups (5.8±3.4 and 4.6±2.4 μmol p-nitroaniline/g protein/30 min in SDR and EHBR groups, respectively). There was a delay of initial biliary excretion of Cu in EHBRs compared to SDRs. The biliary concentration of Mn was slightly lower in EHBRs than in SDRs. Forty min after the injection of metals, however, there was no difference between hepatic concentrations of the two metals in the two groups. Our results suggest that abnormal deposition of the two metals is not observed naturally in EHBRs. Injected HRP was excreted rapidly and notably in the EHBRs compared to SDRs. Furthermore, the biliary concentration of β-N-acetyl-D-glucosaminidase (β-NAG) was significantly higher in EHBRs than in SDRs. Rapid biliary excretion of Cu, but not of Mn, may be related to the hepatobiliary transport of GSH, but the transport and lysosomal function do not originally regulate the biliary excretion of Cu.  相似文献   

14.
Sheep were treated with large amounts of copper (20 mg of CuSO4,5H2O/kg body wt. per day) for 9 weeks to examine the effect of copper excess on iron metabolism. In addition to confirming that massive haemolysis and accumulation of copper occurs in the liver, kidney and plasma after 7 weeks of exposure to excess copper, it was observed that excess copper produced an increased plasma iron concentration and transferrin saturation within 1 week. Further, iron preferentially accumulated in the spleen between 4 and 6 weeks of copper treatment, producing 3-fold increases in the iron content of both the ferritin and non-ferritin fractions. A 3-4 fold increase was also observed in the amount of ferritin that could be isolated from the spleen. The copper treatment had little or no effect on the concentration of iron in the liver and bone marrow. The following properties of erythrocytes were also unaffected by copper treatment: size, haemoglobin content and pyruvate kinase activity, although the erythrocyte concentration of copper increased after 6 weeks. Copper accumulated in the spleen between 6 and 9 weeks, probably owing to the phagocytosis of erythrocytes containing high concentrations of copper. The data suggest that copper excess influences iron metabolism, initially by causing a compensated haemolytic anaemia, and later by interfering with re-utilization of iron from ferritin in the reticuloendothelial cells of the spleen.  相似文献   

15.
Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, was removed with ammonium tetrathiomolybdate (TTM), and the fate of the Cu complexed with TTM and mobilized from the liver was determined. TTM was injected intravenously as a single dose of 2, 10 or 50 mg TTM/kg body weight into LEC and Wistar (normal Cu metabolism) rats, and then the concentrations of Cu and molybdenum (Mo) in the bile and plasma were monitored with time after the injection. In Wistar rats, most of the Mo was excreted into the urine, only a small quantity being excreted into the bile, while Cu excreted into the urine decreased. However, in LEC rats, Cu and Mo were excreted into the bile and blood, and the bile is recognized for the first time as the major route of excretion. The Cu excreted into both the bile and plasma was accompanied by an equimolar amount of Mo. The relative ratio of the amounts of Cu excreted into the bile and plasma was 40/60 for the low and high dose groups, and 70/30 for the medium dose group. The systemic dispositions of the Cu mobilized from the liver and the Mo complexed with the Cu were also determined for the kidneys, spleen and brain together with their urinal excretion. Although Mo in the three organs and Cu in the kidneys and spleen were increased or showed a tendency to increase, Cu in the brain was not increased at all doses of TTM.  相似文献   

16.
Effects of obesity and age on copper, iron, zinc, sodium, potassium, and protein were compared in liver, kidney, brain, and muscle of obese (fa/fa) and nonobese (non-fa/fa) male Zucker rats. Blood plasma cerulopasmin, copper, zinc, sodium, and potassium were also determined. Mean brain weight of fa/fa rats was less than that of non-fa/fa rats at 12 weeks of age; mean brain protein concentration was greater in fa/fa than in non-fa/fa at 5 and 12 weeks of age. At 18-19 days of age, mean sodium concentration (mg/g protein) in liver of fa/fa was less than that of non-fa/fa. At 5 weeks of age, mean copper concentration (microgram/g protein) in kidney was greater in fa/fa. Mean total copper, iron, zinc, sodium, and potassium in liver and kidney were greater in fa/fa than in non-fa/fa at 5 weeks because of the larger livers and kidneys of fa/fa. Mean concentrations of copper, zinc, sodium, and potassium per gram of brain protein were slightly (6-10%) less in fa/fa than in non-fa/fa at 5 weeks. By 12 weeks, mean concentrations of copper in liver, kidney, (tibialis) muscle, and blood plasma, ceruloplasmin in blood plasma, zinc in liver and muscle, iron in muscle, and sodium in liver were greater in fa/fa than in non-fa/fa. However, total amount of each mineral in muscle at 12 weeks was less in fa/fa than in non-fa/fa because of the smaller mean muscle weight of fa/fa. Mean concentrations of copper and zinc in brain and of iron in liver and brain were less in fa/fa than in non-fa/fa at 12 weeks. The major age-related changes in fa/fa that were not observed in non-fa/fa were large increases in liver and kidney copper between 5 and 12 weeks of age. It seems that the abnormal mineral metabolism is a consequence of the obesity, but the mechanisms are not identified.  相似文献   

17.
The hypothesis was tested that there are interactions of marginal copper and vitamin A deficiency regarding iron and zinc status. Copper restriction (1 vs 5 mg Cu/kg diet) significantly lowered copper concentrations in plasma and tissues of rats and reduced blood hemoglobin, hematocrit, and iron concentrations in tibia and femur, but raised iron concentrations in liver. Vitamin A restriction (0 vs 4000 IU vitamin A/kg diet) reduced plasma retinol concentrations and induced a fall of blood hemoglobin and hematocrit. Neither copper nor vitamin A restriction for up to 42 d affected feed intake and body wt gain. There were no interrelated effects of vitamin A and copper deficiency on iron status. Copper deficiency slightly depressed liver, spleen, and kidney zinc concentrations. Vitamin A deficiency lowered zinc concentrations in heart, but only when the diets were deficient in copper.  相似文献   

18.
The effect of repeated parenteral administration of cadmium (0.75, 1.5 and 3.0 mg/kg) on tissue disposition and urinary excretion of cadmium, zinc, copper and iron has been studied in the male rat. Cadmium, zinc and copper accumulated in liver and kidney, but the concentration of iron did not alter significantly. The kidney weight relative to body weight showed a dose-related increase in weight of 25--65%. Excretion of cadmium in the urine increased directly with dosage and the increase was most significant when kidney damage had probably occurred. Administration of cadmium also resulted in dose-related increases in the urinary excretion of zinc, copper and iron. The cadmium concentration of blood increased with dosage of cadmium, and the plasma concentrations of zinc and copper were also raised but plasma iron concentration was diminished.  相似文献   

19.
Effects of altered dietary zinc on levels of zinc, copper, magnesium, and calcium in organ and peripheral tissues were studied. When rats fed a zinc-deficient diet (1.3 μg Zn/g) for 28 d were compared with rats fed a control diet (37.5 μg Zn/g), levels of zinc were slightly lower in plasma, hair, and skin and 50% lower in femur and pancreas, whereas the levels of copper were higher in all tissue except plasma. Magnesium levels were higher than controls in the heart and lower in the spleen, whereas the calcium levels were lower in plasma, lung, spleen, kidney, and skin and strikingly higher in brain, hair, and femur. When rats fed a zinc-supplemented diet (1.0 mg Zn/g) were compared to the same conrols, levels of zinc in these were higher in all organs and peripheral tissues studied, except heart, lung, and liver; copper levels were higher in liver, kidney, and spleen; magnesium levels were significantly higher in the spleen, but were little affected in other tissues, although calcium levels were higher in pancreas, spleen, kidney, and skin and lower in plasma and hair. These data indicate that overall copper organ and peripheral tissue levels are affected inversely, and zinc and calcium levels directly, by zinc nutriture.  相似文献   

20.
The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号