首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research is directed towards developing a more sensitive and rapid electrochemical sensor for enzyme labeled immunoassays by coupling redox cycling at interdigitated electrode arrays (IDA) with the enzyme label beta-galactosidase. Coplanar and comb IDA electrodes with a 2.4 microm gap were fabricated and their redox cycling currents were measured. ANSYS was used to model steady state currents for electrodes with different geometries. Comb IDA electrodes enhanced the signal about three times more than the coplanar IDAs, which agreed with the results of the simulation. Magnetic microbead-based enzyme assay, as a typical example of biochemical detection, was done using the comb and coplanar IDAs. The enzymes could be placed close to the sensing electrodes (approximately 10 microm for the comb IDAs) and detection took less than 1 min with a limit of detection of 70 amol of beta-galactosidase. We conclude that faster and more sensitive assays can be achieved with the comb IDA.  相似文献   

2.
A sensitive and rapid electrochemical microchip fabricated by assembling a surface-functionalized poly(dimethylsiloxane) (PDMS) microchannel with an interdigitated array (IDA) gold electrode was developed for the detection of human cardiac troponin I (cTnI) in the early diagnosis of acute myocardial infarction. Anti-cTnI was immobilized onto the internal surface of the PDMS channel on which protein G layer had been generated by silanization. To reduce electrode fouling, a PDMS channel was assembled with an IDA chip after surface treatment. The detection experiments were performed with successive injection of cTnI, alkaline phosphatase (AP)-labeled anti-cTnI, and p-aminophenylphosphate. Then, cyclic voltammograms were obtained by the oxidation peak current proportionally to the concentration of enzymatic product, p-aminophenol. The optimal packing density of anti-cTnI on the surface of the PDMS channel was determined at the anti-cTnI concentration of 30 microg/ml for the highest electrochemical signal. These demonstrate that the proper orientation and best packing density of antibody as well as no electrode fouling contributed to the low detection limit (148 pg/ml) of cTnI within 8 min.  相似文献   

3.
The fabrication and application of a novel electrochemical detection (ED) method with the functionalized multi-wall carbon nanotubes (MWNTs) chemically modified electrode (CME) for liquid chromatography (LC) were described. The electrochemical behaviors of dopamine (DA) and other monoamine neurotransmitters at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that the CME exhibited efficient electrocatalytic effects on the current responses of monoamine neurotransmitters and their metabolites with high sensitivity, high stability and long-life activity. In LC-ED, DA, norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of seven analytes were over four orders of magnitude and the detection limits were 2.5 x 10(-10) mol/l for DA, 2.5 x 10(-10) mol/l for NE, 5.0 x 10(-10) mol/l for MHPG, 3.0 x 10(-10) mol/l for DOPAC, 3.5 x 10(-10) mol/l for 5-HT, 6.0 x 10(-10) mol/l for 5-HIAA, 1.25 x 10(-9) mol/l for HVA. The application of this method coupled with microdialysis sampling for the determination of monoamine neurotransmitters and their metabolites in Parkinsonian patients' cerebrospinal fluid was satisfactory.  相似文献   

4.
A new type of liquid chromatographic (LC) dual thin-layer amperometric detector for the simultaneous measurement of trace levels of dopamine and serotonin in microdialysates is described. The concentrations of these analytes in rat dialysates are usually in the sub-nanomolar concentration range (typically, 0.10–5.00 pg in 5-μl dialysates). With this dual electrode, a glass-lined microbore column provides excellent sensitivity, selectivity, and separation. In addition, a three- to five-fold improvement in anodic current or cathodic responses over conventional dual electrodes in microbore LC can be achieved. Due to the irreversible electrochemical properties of some interference peaks, this dual electrode provides reliable measurement of dopamine based on the cathodic signal. The detection limit (signal-to-noise RATIO=3) of this assay is 0.02 pg per injection for dopamine or serotonin. This new dual electrode allows the simultaneous measurements of basal dopamine and serotonin in rat striatum dialysates without the use of re-uptake inhibitors in perfusion medium.  相似文献   

5.
In the current study, we developed a nanocatalyst-based electrochemical immunoassay using magnetic beads (MBs) and gold nanocatalysts (AuNs). The MBs conjugated with IgG allow easy separation of target proteins and rapid immunosensing reaction, and the AuNs conjugated with IgG amplifies electroactive species via catalytic reaction of AuNs. An antimouse IgG-MB conjugate and an antimouse IgG-AuN conjugate sandwich a target mouse IgG with low nonspecific binding. Thus formed immunosensing complex is strongly attracted to an indium tin oxide (ITO) electrode modified with partially ferrocenyl-tethered dendrimers (Fc-Ds) by using an external magnet. The AuN of the immunosensing complex produces p-aminophenol from p-nitrophenol by catalytic reduction in the presence of NaBH(4), and the generated p-aminophenol is electrooxidized at the Fc-D-modified ITO electrode. The oxidized product, p-quinone imine, is reduced back to p-aminophenol by NaBH(4) and then re-electrooxidized at the electrode. This redox cycling greatly amplifies the electrochemical signal. Moreover, the Fc-D-modified ITO electrode exhibits a low background current. Accordingly, the high signal-to-background ratio allows an extremely low detection limit of 1 fg/mL (7 aM) in cyclic voltammetric experiments and, importantly, 100 ag/mL (0.7 aM) in differential pulse voltammetric experiments.  相似文献   

6.
Diglycolic acid (DA) polymer was coated on glassy carbon (GC) electrode by cyclic voltammetry (CV) technique for the first time. The electrochemical performances of the modified electrode were investigated by CV and electrochemical impedance (EIS). The obtained electrode showed an excellent electrocatalytic activity for the oxidation of acetaminophen (ACOP). A couple of well-defined reversible electrochemical redox peaks were observed on the ploy(DA)/GC electrode in ACOP solution. Compared with bare GC electrode, the oxidation peak potential of ACOP on ploy(DA)/GC electrode moved from 0.289 V to 0.220 V. Meanwhile, the oxidation peak current was much higher on the modified electrode than that on the bare GC electrode, indicating DA polymer modified electrode possessed excellent performance for the oxidation of ACOP. This kind of capability of the modified electrode can be enlisted for the highly sensitive and selective determination of ACOP. Under the optimized conditions, a wide linear range from 2 × 10(-8) to 5.0 × 10(-4)M with a correlation coefficient 0.9995 was obtained. The detection limit was 6.7 × 10(-9)M (at the ratio of signal to noise, S/N=3:1). The modified electrode also exhibited very good stability and reproducibility for the detection of ACOP. The established method was applied to the determination of ACOP in samples. An average recovery of 100.1% was achieved. These results indicated that this method was reliable for determining ACOP.  相似文献   

7.
Here, an ultrasensitive label-free electrochemical aptasensor was developed for dopamine (DA) detection. Construction of the aptasensor was carried out by electrodeposition of gold–platinum nanoparticles (Au–PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs–COOH). A designed complementary amine-capped capture probe (ssDNA1) was immobilized at the surface of PtNPs/CNTs–COOH/GC electrode through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides. DA-specific aptamer was attached onto the electrode surface through hybridization with the ssDNA1. Methylene blue (MB) was used as an electrochemical indicator that was intercalated into the aptamer through the specific interaction with its guanine bases. In the presence of DA, the interaction between aptamer and DA displaced the MB from the electrode surface, rendering a lowered electrochemical signal attributed to a decreased amount of adsorbed MB. This phenomenon can be applied for DA detection. The peak current of probe (MB) linearly decreased over a DA concentration range of 1–30 nM with a detection limit of 0.22 nM.  相似文献   

8.
The objective of this study was to develop a sensitive and miniaturized immunoassay by coupling a microbead-based immunoassay with an interdigitated array (IDA) electrode. An IDA electrode amplifies the signal by recycling an electrochemically redox-reversible molecule. The microfabricated platinum electrodes had 25 pairs of electrodes with 1.6-microm gaps and 2.4-microm widths. An enzyme-labeled sandwich immunoassay on paramagnetic microbeads with mouse IgG as the analyte and beta-galactosidase as the enzyme label was used as the model system. beta-Galactosidase converted p-aminophenyl beta-D-galactopyranoside to p-aminophenol (PAP). This enzyme reaction was measured continuously by positioning the microbeads near the electrode surface with a magnet. Electrochemical recycling occurred with PAP oxidation to p-quinone imine (PQI) at +290 mV followed by PQI reduction to PAP at -300 mV vs Ag/AgCl. Dual-electrode detection amplified the signal fourfold compared to single-electrode detection, and the recycling efficiency reached 87%. A calibration curve of PAP concentration vs anodic current was linear between 10(-4) and 10(-6)M. A signal from 1000 beads in a 20-microL drop was detectable and the immunoassay was complete within 10 min with a detection limit of 3.5x10(-15)mol mouse IgG.  相似文献   

9.
The long-term stability of sensing interfaces is an important issue in biosensor fabrication. A novel stable gold nanoparticle (AuNP)-modified glassy carbon (GC) electrode interface (GC-Ph-AuNP)-based biosensor for detecting carcinoembryonic antigen (CEA) was developed. GC electrodes were modified with 1,4-phenylenediamine to form a stable layer, and then AuNPs were bound onto the GC electrodes through CAu bonds. Anti-CEA was directly adsorbed on AuNPs fixed on the GC electrode. The linear range of the immunosensor was from 10 fg to 100 ng mL(-1) with a detection limit of 3 fg mL(-1) (S/N=3). The current of the immunosensor was increased by 4% after one month. The GC-Ph-AuNP immunosensor showed high sensitivity, a wide linear range, low detection limit, and good selectivity and stability. The immobilization method of the immunosensor could be widely applied to construct other immunosensors.  相似文献   

10.
The first faradiac peak in the voltammogram at +0.12 volts vs an Ag/AgCl reference recorded using a carbon paste working electrode results primarily from the oxidation of extracellular ascorbic acid (AA) with lesser contributions from dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC). The rise in this peak following DA agonist treatment cannot be explained by changes in DA or DOPAC levels since these would be expected to decrease. We carried out brain dialysis and in vivo voltammetry studies in parallel to determine the identity of the substances released into the striatal extracellular fluid by the DA agonist, pergolide, and the dopamine releaser, d-amphetamine.  相似文献   

11.
A novel enzyme-linked DNA hybridization assay on an interdigitated array (IDA) microelectrode integrated into a microfluidic channel is demonstrated with sub-nM detection limit. To improve the detection limit as compared to conventional electrochemical biosensors, a recyclable redox product, 4-aminophenol (PAP) is used with an IDA microelectrode. The IDA has a modest and easily fabricated inter-digit spacing of 10 μm, yet we were able to demonstrate 97% recycling efficiency of PAP due to the integration in a microfluidic channel. With a 70 nL sample volume, the characterized detection limit for PAP of 1.0 × 10?1? M is achieved, with a linear dynamic range that extends from 1.0 × 10?? to 1.0 × 10?? M. This detection limit, which is the lowest reported detection limit for PAP, is due to the increased sensitivity provided by the sample confinement in the microfluidic channel, as well as the increased repeatability due to perfectly static flow in the microchannel and an additional anti-fouling step in the protocol. DNA sequence detection is achieved through a hybridization sandwich of an immobilized complementary probe, the target DNA sequence, and a second complementary probe labeled with β-galactosidase (β-GAL); the β-GAL converts its substrate, 4-aminophenyl-d-galactopyranoside (PAPG), into PAP. In this report we present the lowest reported observed detection limit (1.0 × 10?1? M) for an enzyme-linked DNA hybridization assay using an IDA microelectrode and a redox signaling paradigm. Thus, we have demonstrated highly sensitive detection of a targeted DNA sequence using a low-cost easily fabricated electrochemical biosensor integrated into a microfluidic channel.  相似文献   

12.
A new platform based on electrochemical growth of Au nanoparticles on horizontally aligned single walled carbon nanotube (SWCNT) array was developed for ultrasensitive DNA detection. The as-prepared DNA-functionalized SWCNT-Au platform, in which every gold-coated SWCNT acts as an isolated micro electrode, could detect lower than 10 zmol complimentary 10-base DNA, which corresponded to having 6 DNA molecules in a 1 mL sample solution. For a 1-base mismatched DNA, the experimental detection limit was 100 amol. A linear relationship between the change of charge transfer resistance and target DNA concentration was achieved at low concentration range. Over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship with respect to the logarithm of the target DNA concentration. The sensor also showed great stability and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining Au nanoparticles with the on-site fabricated SWCNT array represents a promising platform for achieving ultrasensitive biosensor.  相似文献   

13.
The amperometric detection of neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) was achieved at a tyrosinase-chitosan composite film-modified glassy carbon (GC) electrode. The optimal conditions for the preparation of the biosensor were established. This bio-composite film was characterized by scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectra, suggesting that chitosan covalently connected to chitosan chains. Electrochemical characterization of the bio-hybrid membrane-covered electrodes were also performed in 0.05 M phosphate buffer solution (pH 6.52) containing neurotransmitters or their derivatives by using cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and amperometry. This simply-prepared protein-polysaccharide hybrid film provides a microenvironment friendly for enzyme loading. The sensor was operated at -0.15 V with a short response time. The current linearly increased with the increasing concentration of DOPAC over the concentration of 6 nM-0.2 mM. The lower detection limit for DOPAC is 3 nM (S/N=3). The sensitivity of the sensor is 40 microA mM(-1). A physiological level of neurotransmitters and their derivatives including dopamine, l-dopa, adrenaline, noradrenaline and homovanillic acid as well as ascorbic acid, uric acid and acetaminophen do not affect the determination of DOPAC.  相似文献   

14.
Glassy carbon (GC) electrode was modified using multi-wall carbon nanotubes (MWCNTs), quercetin (Q) and Nafion® in this sequence. The thus modified electrode was used for the detection of dopamine (DA) in the presence of equimolar ascorbic acid (AA). It is demonstrated in this study that MWCNTs can increase the current response of DA by five-fold and Q can reduce the oxidation overpotential of DA by about 60 mV, compared to these parameters obtained with a bare GC electrode. It is also shown that a layer of Nafion® can virtually eliminate the interference of AA for the detection of DA. The GC/MWCNTs/Q/Nafion® electrode (hereafter also called composite electrode) shows a current density of about 900 μA cm−2 for DA, compared to the value of 80 μA cm−2 of the GC electrode and to the value of 390 μA cm−2 of the GC/MWCNTs electrode. The 11-fold enhancement in the sensitivity of the GC electrode for DA determination is attributed to the composite modification of the electrode, and is substantiated through various cyclic voltammetric experiments. Cyclic voltammetry (CV) and linear sweep voltammetry were used to characterize the electrodes. Calibration curves of batch and flow systems were obtained by amperometry for the detection of DA. Additionally, the composite modified electrode was tested with a human serum sample for the determination of DA and was found to be promising at our preliminary experiments.  相似文献   

15.
A microfluidic biosensor chip with an embedded three-electrode configuration is developed for the study of the voltammetric response of a nanoelectrode array with controlled inter-electrode distance in a nanoliter-scale sample volume. The on-chip three-electrode cell consists of a 5 × 5 array of Au working nanoelectrodes with radii between 60 and 120 nm, a Cl(2)-plasma-treated Ag/AgCl reference electrode, and a Au counter electrode. The nanoelectrode array is fabricated by creating high-aspect-ratio pores through an alumina insulating layer using an I(2) gas-assisted focused-ion-beam (FIB) milling, ion beam sculpting, and electrodeposition of Au. The glass substrate with the electrode pattern is assembled with a polydimethylsiloxane (PDMS) microchannel slab giving a volume of 180 nL for each channel. Cyclic voltammetry calibration with a standard redox species exhibits a significant increase of current density by two orders of magnitude compared to that obtained from a microelectrode. On-chip functionalization of the nanoelectrodes with a prostate-specific antigen (PSA) biosensor complex and detection of PSA based on a competitive immunoassay method are performed. The detection limit is approximately 10 pg/mL (~270 fM), which corresponds to roughly 30,000 copies of PSA in the microchannel test volume.  相似文献   

16.
An electrochemical microanalytical system consisting of a microelectrode array, a micromachined flow-through assembly, and a multichannel potentiostat were constructed for highly sensitive biosensing. Thin-film platinum microelectrode arrays consisting of four interdigitated microelectrodes (IDAs), which are spaced in the sub-micrometer range, were fabricated using silicon technology. On top of this chip, a micromachined flow-through cell was mounted. Using a home made miniaturized multipotentiostat, amperometric measurements of the individual electrodes at different and changing potentials, respective to a single reference electrode, were performed simultaneously. The signal generation, signal processing and the analytical system were controlled by a computer (PC type) and special software. An improved sensor sensitivity was achieved by multielectrode detection and averaging of the IDA responses.

By applying both the oxidation and reduction potentials of reversible redox molecules to pairs of the interdigitated electrodes, an increased current generation can be observed. Thus the steady state current of mediators such as benzoquinone can be amplified by a factor of 30 compared with conventional electrodes. This measuring principle was applied to determine of the activity of hydrolases by detecting the enzyme generated p-aminophenol in the nanomolar range. By combining both, the averaging and the recycling procedures, the detection limit of amperometric biosensing devices may be lowered by about one and a half orders of magnitude.  相似文献   


17.
A determination of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) in nervous tissue is described. The method is based on a rapidly performed isolation of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA from one single nervous tissue sample on small columns of Sephadex G-10, followed by reverse-phase high-performance liquid chromatography with electrochemical detection. A new type of electrochemical detector based on a rotating disk electrode (RDE) was used. The rotating disc electrode was found to be a reliable and sensitive amperometric detector with several advantages over the currently used thin-layer cells. The detector appeared very useful for routine analysis. Practical details are given for the routine use of the RDE. Brain samples containing no more than 75-150 pg (DA, DOPA, DOPAC, HVA, and 5-HIAA) or 500 pg (NA) could be reproducibly assayed with high recovery (approx. 85%) and precision (approx. 5%), without the use of internal standards. Endogenous concentrations of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA were determined in eight brain structures.  相似文献   

18.
Iso-octyl chain-hydroxylated oxysterols were determined in attomoles per 10,000 cells concentrations in 10,000–80,000 cultured pancreatic adenocarcinoma cells, using a sensitive, highly automated nano-LC-ESI-MS-based method. Identified oxysterols included 24S hydroxycholesterol (24S-OHC), 25 hydroxycholesterol (25-OHC), and 27 hydroxycholesterol (27-OHC), while 20S hydroxycholesterol and 22S hydroxycholesterol were not detected. Lower mass limit of quantification was 23 fg (65 amol) for 25-OHC and 27-OHC (100 times lower than our previous method) and 54 fg (135 amol) for 24S-OHC, after derivatization into Girard T hydrazones and online sample cleanup using simplified and robust automatic filtration and filter back flushing solid phase extraction LC/MS/MS. The instrument configuration was easily installed using a commercial nano-LC/MS system. Recoveries in spiked sample were 96, 97, and 77% for 24S-OHC, 25-OHC, and 27-OHC, with within- and between-day repeatabilities of 1–21% and 2–20% relative SD, respectively. The study demonstrates the potential of nano-LC in lipidomics/sterolomics.  相似文献   

19.
A poly(3-methylthiophene) modified glassy carbon electrode coated with Nafion/single-walled carbon nanotubes film was fabricated and used for highly selective and sensitive determination of dopamine. The hybrid film surface of the modified electrode was characterized by scanning electrochemical microscopy (SECM) and the results indicated that the carbon nanotubes were dispersed uniformly on the conductive polymer. The experimental results suggest that the hybrid film modified electrode combining the advantages of poly(3-methylthiophene), carbon nanotubes with Nafion exhibits dramatic electrocatalytic effect on the oxidation of dopamine (DA) and results in a marked enhancement of the current response. In 0.1M phosphate buffer solution (PBS) of pH 7.0, the differential pulse voltammetric (DPV) peak heights are linear with DA concentration in three intervals, viz. 0.020-0.10 microM, 0.10-1.0 microM and 1.0-6.0 microM, with correlation coefficients of 0.9993, 0.9996 and 0.9993, respectively. The detection limit of 5.0 nM DA could be estimated (S/N=3). Moreover, the interferences of ascorbic acid (AA) and uric acid (UC) are effectively diminished. This hybrid film modified electrode can be applied to the determination of DA contents in dopamine hydrochloride injection and human serum. These attractive features provide a potential application for either in vitro measurement of DA in the presence of excess AA and UA or as detectors in flow injection analysis (FIA) and high performance liquid chromatography (HPLC).  相似文献   

20.
1. The levels of 5-HT, DA, NA and DA metabolites (NADA, DOPAC) measured by HPLC (with electrochemical detection) in the brain of the house cricket did not change over a 24-hr period. The level of 5-HIAA, a 5-HT metabolite, was below the limit of detection. 2. The 5-HT and DOPAC levels decreased and NADA increased after quipazine injection but DA and NA levels did not change after it. 3. [3H]Ketanserin was used to identify serotonin receptors bound to sites in the house cricket brain with a KD of 5 nM and a concentration of Bmax 180 fmol/mg protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号