首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed.  相似文献   

2.
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.  相似文献   

3.
4.
The membrane F0 sector of mitochondrial ATP synthase complex was rapidly isolated by direct extraction with CHAPS from F1-depleted submitochondrial particles. The preparation thus obtained is stable and can be reconstituted in artificial phospholipid membranes to result in oligomycin-sensitive proton conduction, or recombined with purified F1 to give the oligomycin-sensitive F0F1-ATPase complex. The F0 preparation and constituent polypeptides were characterized by SDS-polyacrylamide gel electrophoresis and immunoblot analysis. The functional role of F0 polypeptides was examined by means of trypsin digestion and reconstitution studies. It is shown that, in addition to the 8 kDa DCCD-binding protein, the nuclear encoded protein [(1987) J. Mol. Biol. 197, 89-100], characterized as an intrinsic component of F0 (F0I, PVP protein [(1988) FEBS Lett. 237,9-14]) [corrected] is involved in H+ translocation and the sensitivity of this process to the F0 inhibitors, DCCD and oligomycin.  相似文献   

5.
心室内和心外膜应用腺苷对延髓PGL神经元电活动的影响   总被引:1,自引:0,他引:1  
在35只切断两侧缓冲神经和迷走神经的麻醉大鼠,观察心室内注射腺苷和心外膜涂布腺苷对延髓腹外侧头端区PGL神经元自发电活动的影响。结果如下:(1)35只大鼠共记录到121个自发放电单位,平均放电频率为22.5±1.9spikes/s。(2)心室内冲击注射腺苷(0.5μmol/kg,0.1ml)时,BP先升(△1.7±0.2kPa,P<0.001)后降(△4.6土0.5kPa,P<0.001),HR减慢(△126.5±12.3bpm,P<0.001);35个PGL神经元自发放电单位中,30个单位的放电频率由21.9士2.6增至29.2土3.4spikes/s(P<0.001),3个单位不变,2个单位减少。(3)心外膜涂布腺苷(20mmol/L),动脉血压和心率的变化不明显,22个PGL神经元自发放电频率由18.8土1.9增至26.9土2.8spikes/s(P<0.001),3个单位的放电频率无变化。(4)静脉注射选择性腺苷A1受体拮抗8-cyclopentyl-1,3-dipropylxanthine(DPCPX,500μg/kg)可完全阻断腺苷对PGL神经元的兴奋效应。(5)在左右房室沟涂布85%酚或切除双侧星状神经节后,腺苷激活PGL神经元的效应即行消失。结果提示,腺苷可通过人受体激活心交感神经传入纤维,进而兴奋PGL神经元。  相似文献   

6.
Proteolytic digestion of F1-depleted submitochondrial particles (USMP), reconstitution with isolated subunits and titration with inhibitors show that the nuclear-encoded PVP protein, previously identified as an intrinsic component of bovine heart F0 (F01) (Zanotti, F. et al. (1988) FEBS Lett. 237, 9-14), is critically involved in maintaining the proper H+ translocating configuration of this sector and its correct binding to the F1 catalytic moiety. Trypsin digestion of USMP, under conditions leading to cleavage of the carboxyl region of the PVP protein and partial inhibition of transmembrane H+ translocation, results in general loss of sensitivity of this process to F0 inhibitors. This is restored by addition of the isolated PVP protein. Trypsin digestion of USMP causes also loss of oligomycin sensitivity of the catalytic activity of membrane reconstituted soluble F1, which can be restored by the combined addition of PVP and OSCP, or PVP and F6. Amino acid sequence analysis shows that, in USMP, modification by [14C] N,N'-dicyclohexylcarbodiimide of subunit c of F0 induces the formation of a dimer of this protein, which retains the 14C-labelled group. Chemical modification of cysteine-64 of subunit c results in inhibition of H+ conduction by F0. The results indicate that proton conduction in mitochondrial F0 depends on interaction of subunit c with the PVP protein.  相似文献   

7.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

8.
9.
We present an analysis of models based on current structural concepts of the F0F1 synthases, accounting for coupling between proton transport and ATP synthesis. It is assumed that each of the three alpha beta-subunits of the synthase can exist in three different conformational states E, Eo and E*. Proton translocation is coupled to cyclic interconversion of the conformations of the alpha beta-subunits. The conformational changes of these subunits are assumed to be coordinated so that all three interconvert simultaneously, in a rate-limiting transition. Binding and release of the ligands ATP, ADP, Pi, and protons are assumed to be equilibrium steps. In one family of models, interconversion of the alpha beta-subunits of F1 is coupled to the translocation event in F0 acting as a proton carrier. In a second family of models, protons combine with F0F1 and are translocated during the interconversion step in a chemiport. Kinetic tests involving the mutual effects of [ATP], [ADP], H+', and H+" are described, allowing us to make a distinction between the different models and submodels.  相似文献   

10.
The yeast Saccharomyces cerevisiae F1F0-ATPase epsilon-subunit (61 residues) was synthesized by the solid-phase peptide approach under both acidic and basic strategies. Only the latter strategy allowed us to obtain a pure epsilon-subunit. The strong propensity of the protein to produce few soluble dimeric species depending on pH has been proved by size-exclusion chromatography, electrophoresis and mass spectrometry. A circular dichroism study showed that an aqueous solution containing 30% trifluoroethanol or 200 mM sodium dodecyl sulphate is required for helical folding. In both solvents at acidic pH, the epsilon-subunit is soluble and monomeric.  相似文献   

11.
12.
本文用х2方和柯尔莫哥洛夫检验分析了北美Chihuahuan荒漠啮齿动物群落6个生态学变量的频次分布,并用移动平均和指数平滑方法拟合了这些变量的动态变化。结果显示:1)结合种群密度、生物量、物种均匀性和生物量均匀性服从正态分布;2)物种数和物种多样性的频次为向右偏斜的分布,无法用常见的理论分布来近似表示;3)单移动平均和双移动平均分别较好地描述了物种多样性和物种均匀性;4)其余4个变量可用单指数平滑来较好的描述.  相似文献   

13.
We studied the effect of the delta subunit of the Escherichia coli F1 ATPase on the proton permeability of the F0 proton channel synthesized and assembled in vivo. Membranes isolated from an unc deletion strain carrying a plasmid containing the genes for the F0 subunits and the delta subunit were significantly more permeable to protons than membranes isolated from the same strain carrying a plasmid containing the genes for the F0 subunits alone. This increased proton permeability could be blocked by treatment with either dicyclohexyl-carbodiimide or purified F1, both of which block proton conduction through the F0. After reconstitution with purified F1 in vitro, both membrane preparations could couple proton pumping to ATP hydrolysis. These results demonstrate that an interaction between the delta subunit and the F0 during synthesis and assembly produces a significant change in the proton permeability of the F0 proton channel.  相似文献   

14.
15.
人工饲养条件下高原鼠兔生长和发育的初步研究   总被引:10,自引:7,他引:3  
叶润蓉  梁俊勋 《兽类学报》1989,9(2):110-118
本文研究了人工饲养条件下高原鼠兔的生长发育情况,并和其他种鼠兔的生长作了比较。室内高原鼠兔比野外的生长快,人工饲养的阿富汗鼠兔和北美鼠兔生长期短,成熟早。  相似文献   

16.
17.
An F0F1-ATPase was isolated from the membranes of the marine bacterium Vibrio alginolyticus. Homology between the subunits of the F0-complexes from E. coli and V. alginolyticus was found using antibodies against subunits a, b and c of the E. coli F0F1-ATPase. The F0F1-complex from V. alginolyticus was reconstituted into proteoliposomes, which were competent in ATP-dependent proton uptake. This process was inhibited by triphenyltin, DCCD, and venturicidin. Na+ did not affect proton translocation.  相似文献   

18.
The a subunit, a membrane protein from the E. coli F1F0 ATP synthase has been examined by Fourier analysis of hydrophobicity and of amino-acid residue variation. The amino-acid sequences of homologous subunits from Vibrio alginolyticus, Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, Schizosaccharomyces pombe and Candida parapsilosis were used in the variability analysis. By Fourier analysis of sequence variation, two transmembrane helices are predicted to have one face in contact with membrane lipids, while the other spans are predicted to be more shielded from the lipids by protein. By Fourier analysis of hydrophobicity, six amphipathic alpha-helical segments are predicted in extra-membrane regions, including the region from Glu-196 to Asn-214. Fourier analysis of sequence variation in the b- and the c-subunits of the Escherichia coli F1F0 ATP synthase indicates that the single transmembrane span of the b-subunit and the C-terminal span of the c subunit each have a face in contact with membrane lipids. On the basis of this analysis topographical models for the a- and c-subunits and for the F0 complex are proposed.  相似文献   

19.
1. The purified ATP synthetase complex (F1F0) from Escherichia coli was adsorbed to immobilized poly-(L-lysine)-deoxycholic acid. About 0.7 mg F1F0 were bound per ml of settled gel. The hydrophilic F1 part was dissociated from the complex by treatment with 7 M urea. F0 was eluted in high yield either with deoxycholate (6 mM) or taurodeoxycholate (10 mM). About 14% of the total protein bound to the column was eluted as F0, which corresponds to 64% of the total F0 in the F1F0 complex. 2. The purified F0 preparation obtained was composed of three different kinds of subunits with apparent molecular weights of 24000 (a), 19000 (b) and 8300 (c), respectively as determined by sodium dodecyl sulfate gel electrophoresis. 3. After incorporation into liposomes and the generation of a potassium diffusion potential by valinomycin, the F0 preparation mediated H+ translocation. This H+ uptake is inhibited by either dicyclohexylcarbodiimide or purified F1 ATPase. 4. Incubation of F0-containing liposomes with F1 led to the reconstitution of an ATP-driven quenching of acridine-dye fluorescence. The quenching was abolished by uncoupler and prevented by dicyclohexylcarbodiimide.  相似文献   

20.
The F1F0 complex of Paracoccus denitrificans (PdF1F0) is the fastest ATP synthase but the slowest ATPase. Sulfite exerts maximal activation of the PdF1F0-ATPase (Pacheco-Moisés, F., García, J. J., Rodríguez-Zavala, J. S., and Moreno-Sánchez, R. (2000). Eur. J. Biochem. 267, 993–1000) but its effect on the PdF1F0-ATP synthase activity remains unknown. Therefore, we studied the effect of sulfite on ATP synthesis and 32Pi ATP exchange reactions of inside-out membrane vesicles of P. denitrificans. Sulfite inhibited both reactions under conditions of maximal pH and normal sensitivity to dicyclohexylcarbodiimide. Sulfite increased by 10- and 5-fold the K 0.5 for Mg2+-ADP and Pi during ATP synthesis, respectively, and by 4-fold the IC50 of Mg2+-ADP for inhibition of the PdF1F0-ATPase activity. Thus, sulfite exerts opposite effects on the forward and reverse functioning of the PdF1F0 complex. These effects are not due to membrane or PdF1F0 uncoupling. Kinetic and structural modifications that could account for these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号