首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sympathetic stimulation induces weak salivation compared with parasympathetic stimulation. To clarify this phenomenon in salivary glands, we investigated cAMP-induced modulation of Ca(2+)-activated Cl(-) secretion from rat parotid and submandibular acinar cells because fluid secretion from salivary glands depends on the Cl(-) secretion. Carbachol (Cch), a Ca(2+)-increasing agent, induced hyperpolarization of the cells with oscillatory depolarization in the current clamp mode of the gramicidin-perforated patch recording. In the voltage clamp mode at -80 mV, Cch induced a bumetanide-sensitive oscillatory inward current, which was larger in rat submandibular acinar cells than in parotid acinar cells. Forskolin and IBMX, cAMP-increasing agents, did not induce any marked current, but they evoked a small nonoscillatory inward current in the presence of Cch and suppressed the Cch-induced oscillatory inward current in all parotid acinar cells and half (56%) of submandibular acinar cells. In the current clamp mode, forskolin + IBMX evoked a small nonoscillatory depolarization in the presence of Cch and reduced the amplitude of Cch-induced oscillatory depolarization in both acinar cells. The oscillatory inward current estimated at the depolarized membrane potential was suppressed by forskolin + IBMX. These results indicate that cAMP suppresses Ca(2+)-activated oscillatory Cl(-) secretion of parotid and submandibular acinar cells at -80 mV and possibly at the membrane potential during Cch stimulation. The suppression may result in the weak salivation induced by sympathetic stimulation.  相似文献   

3.
Patterns of salivary HCO secretion vary widely among species and among individual glands. In particular, virtually nothing is known about the molecular identity of the HCO transporters involved in human salivary secretion. We have therefore examined the distribution of several known members of the Na(+)-HCO cotransporter (NBC) family in the parotid and submandibular glands. By use of a combination of RT-PCR and immunoblotting analyses, the electroneutral cotransporters NBC3 and NBCn1 mRNA and protein expression were detected in both human and rat tissues. Immunohistochemistry demonstrated that NBC3 was present at the apical membranes of acinar and duct cells in both human and rat parotid and submandibular glands. NBCn1 was strongly expressed at the basolateral membrane of striated duct cells but not in the acinar cells in the human salivary glands, whereas little or no NBCn1 labeling was observed in the rat salivary glands. The presence of NBCn1 at the basolateral membrane of human striated duct cells suggests that it may contribute to ductal HCO secretion. In contrast, the expression of NBC3 at the apical membranes of acinar and duct cells in both human and rat salivary glands indicates a possible role of this isoform in HCO salvage under resting conditions.  相似文献   

4.
The central feature of fluid and electrolyte secretion by salivary acinar cells is transepithelial Cl- movement as a driving force for the secretion. However, little is known about the membrane localization and regulation by agonists of various anion channels. To characterize the anion transport and fluid secretion, we visualized the secretory process induced by the cholinergic agonist, carbachol (CCh), using the anionic fluorescent dye, calcein, under a confocal laser scanning microscope. The fluorescence of calcein loaded into the isolated acini was spread diffusely throughout the cytoplasm and was less intense in the secretory vesicles which occupied the apical pole. Cytoplasmic calcein was released into intercellular canaliculi just after the addition of CCh, depending upon a rise in [Ca2+]i by Ca2+ release from intracellular stores. Thereafter, the formation of watery vacuoles connected with intercellular canaliculi was visualized in the calcein-loaded acini, depending upon external Ca2+. Both the calcein release and vacuole formation were inhibited by suppressing the Ca(2+)-activated K+ efflux. The calcein release was also affected by the external anion substitution, suggesting that calcein is released through an anion channel. In the isolated, perfused glands, CCh-induced fluid secretion was sustained in two phases, whereas the loaded calcein was initially and transiently released into the saliva. By revealing the [Ca2+]i dependence and sensitivities to channel blockers, our results suggest that the initial phase of CCh-induced fluid secretion was evoked in association with the release of the organic anion, calcein, and the late phase of fluid secretion, during which calcein is less permeable, was associated with the formation of watery vacuoles. Thus, the anion channels possessing the distinct property of anion permeation may be activated in the initial phase and late phase. These results indicate that the anionic fluorescent dye, calcein, is useful for visualizing the process of Ca(2+)-dependent fluid secretion, and for clarifying the relation between fluid secretion and anion transport.  相似文献   

5.
BACKGROUND INFORMATION: TSPO (translocator protein), previously known as PBR (peripheral-type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High-affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium-dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. RESULTS: Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam-binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, (3)H-labelled PK 11195, as shown by B(max) and K(d) values of 10.0+/-0.5 pmol/mg and 4.0+/-1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and alpha-adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K(+), Na(+), Cl(-) and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. CONCLUSIONS: High-affinity ligand binding to mitochondrial TSPO modulates neurotransmitter-induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

6.
Adiponectin functions as a promoter of saliva secretion in rat submandibular gland via activation of adenosine monophosphate-activated protein kinase (AMPK) and increased paracellular permeability. Ca2+ mobilization is the primary signal for fluid secretion in salivary acinar cells. However, whether intracellular Ca2+ mobilization is involved in adiponectin-induced salivary secretion is unknown. Here, we found that full-length adiponectin (fAd) increased intracellular Ca2+ and saliva secretion in submandibular glands. Pre-perfusion with ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) combined with thapsigargin (TG), an endoplasmic reticulum Ca2+-ATPase inhibitor, abolished fAd-induced salivary secretion, AMPK phosphorylation, and enlarged tight junction (TJ) width. Furthermore, in cultured SMG-C6 cells, co-pretreatment with EGTA and TG suppressed fAd-decreased transepithelial electrical resistance and increased 4-kDa FITC-dextran flux responses. Moreover, fAd increased phosphorylation of calcium/calmodulin-dependent protein kinase (CaMKKβ), a major kinase that is activated by elevated levels of intracellular Ca2+, but not liver kinase B1 phosphorylation. Pre-perfusion of the isolated gland with STO-609, an inhibitor of CaMKKβ, abolished fAd-induced salivary secretion, AMPK activation, and enlarged TJ width. CaMKKβ shRNA suppressed, whereas CaMKKβ re-expression rescued fAd-increased paracellular permeability. Taken together, these results indicate that adiponectin induced Ca2+ modulation in rat submandibular gland acinar cells. Ca2+-CaMKKβ pathway is required for adiponectin-induced secretion through mediating AMPK activation and increase in paracellular permeability in rat submandibular glands.  相似文献   

7.
In untreated, fasting animals the cells of the serous demilunes of the sublingual gland incorporate [3H]-leucine at a higher rate than any other of the 5 main cell types of the 3 major salivary glands. The acinar cells of the submandibular and the mucous cells of the sublingual gland show intermediate values, while the cells of the granular ducts of the submandibular and the acini of the parotid gland have a low rate of incorporation. In fasting animals extrusion of newly synthesized protein starts early in the cells of the serous demilunes. It starts between 4 and 7 hrs after [3H]-leucine injection in the acinar cells of the submandibular gland, while the other cell types did not lose substantial amounts of labelled (glyco)protein within 7 hrs. The secretion of protein is stimulated by the cholinergic drug pilocarpine in all but one of the 5 types of salivary gland cells studied. The acinar cells of the submandibular gland react strongly, the granular duct cells less strongly. Still less are the reactions of the acinar cells of the parotid and of the nucous cells of the sublingual gland. The cells of the serous demilunes of the latter appear to be insensible to pilocarpine. The effect of food uptake on secretion does not differ from pilocarpine stimulation, with one exception: the acinar cells of the parotid gland react more strongly on food uptake than on cholenergic stimulation.  相似文献   

8.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

9.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

10.
Summary The secretory behaviour of rat nasal glands, under normal conditions and after the application of cholinergic drugs, has been studied using morphological and radiobiochemical techniques.Autoradiography and electrophoresis provide evidence for the selective incorporation of 3H-arginine into the glycoprotein containing fraction of the nasal glandular secretion. Radiobiochemical experiments show that labelled arginine is rapidly incorporated into the acinar cells of unstimulated glands, although it takes approximately 4 h before the labelled secretory proteins leave the cells. The secretion of proteins is stimulated by the parasympathetic agonist pilocarpine, whose main action is to promote discharge. Histological sections show a depletion of secretory granules after pilocarpine treatment. The cholinergic antagonist atropine inhibits the secretion; the acinar cells are completely filled with secretory granules following this treatment. The time course of the events following atropine administration suggests that there is no feed-back system controlling glycoprotein synthesis.The techniques employed here therefore appear to be useful for studying the effects of drugs that interfere with the secretory activity of the nasal glands.  相似文献   

11.
Secretion of fluid, ions, and amylase from parotid and submaxillary glands of rat, induced by intravenous injection of substance P (SP), was examined. The action of SP on salivary glands, like physalaemin, resembled that of cholinergic stimulation. While SP-evoked salivary flow from both glands was blocked by atropine, atropine did not modify composition of SP-evoked saliva. The present study suggests that salivary secretion and secretion of ions and amylase evoked by SP are mediated via SP-sensitive cholinergic receptors and specific SP receptors, respectively.  相似文献   

12.
We have studied the transduction of TAT-HA-beta-galactosidase fusion protein into two cell lines of rat salivary gland origin, A5 and C6-21, into cells of fetal mouse submandibular glands in organ culture, and into rat submandibular gland after retrograde duct injection, using a histochemical method to demonstrate beta-galactosidase activity. Transduction of the fusion protein into A5 and C6-21 cells was concentration- and time-dependent. Therefore, the intensity of the beta-galactosidase staining, which was cytoplasmic, was less after 1 hr of exposure compared to exposures up to 24 hr. However, the fusion protein was transduced into 100% of both types of cultured cells. When explants of mouse fetuses at 13 days of gestation were exposed to the fusion proteins, both epithelial and mesenchymal cells were stained for the enzyme, with a conspicuous accumulation of the reaction product at perinuclear cytoplasmic regions. The histochemical staining of the mesenchymal cells was more intense compared to that seen in epithelial cells. TAT-HA-beta-galactosidase fusion protein was also delivered to rat submandibular glands by retrograde duct injection. Histochemical staining for beta-galactosidase activity of cryostat sections prepared from the injected glands revealed that the transduction of the fusion protein was also time- and dose-dependent. In the glands of rats sacrificed from 10 min to 1 hr after the retrograde injection, essentially all acinar and duct cells showed cytoplasmic staining. The intensity of the staining then declined, and was not seen in the glands of rats killed 24 hr after the injection of the fusion proteins. These results indicate that a full-length, active TAT fusion protein can be targeted to salivary gland cells both in vitro and in vivo to analyze physiological, developmental, and pathophysiological processes.  相似文献   

13.
We have previously demonstrated in rats that Chagas' disease affects the salivary glands, by promoting an enlargement of the submandibular gland. In order to further investigate possible functional alterations on infected submandibular glands, the objective of the present study was to analyze epidermal growth factor (EGF) expression on rat submandibular glands during Trypanosoma cruzi infection. Results demonstrated that infected rats presented lower levels of testosterone, and morphological changes in the granular convoluted tubule (GCT) cells of the submandibular glands, along with acinar enlargement and delayed ductal maturation at the developing granular ducts. Immunohistochemistry analysis additionally showed that only few cells immunolabelled with anti-EGF on infected rats during the acute phase of Chagas' disease, while after 64 and 90 days (chronic phase) of infection, EGF expression was similar to non-infected rats. The present findings suggest that at the acute phase of Chagas' disease, lower levels of testosterone may lead to a delayed maturation of GCT, which positively correlates with decreased EGF production by submandibular glands cells.  相似文献   

14.
Secretion of saliva in X-irradiated rat submandibular glands   总被引:4,自引:0,他引:4  
The mechanism of radiation-induced dysfunction in rat submandibular glands was investigated at the cellular level. After X irradiation (single dose, 15 Gy), a vacuolation in the acinar cells or an enlargement of the acinar lumen was observed as a typical morphological change for 2 weeks. As observed using a video-enhanced contrast differential interference contrast (VEC-DIC) microscope, exocytosis and shrinkage of the acinar cells induced by application of pilocarpine (100 microM) were markedly suppressed for 5 days and then recovered to 80% of the control levels. Using an immunohistochemical method, no significant change was observed in amylase distribution, but a marked loss of aquaporin 5 was found in the acinar cells after the irradiation. The extent and time course of pilocarpine-induced mobilization of intracellular Ca(2+) did not change after the irradiation. We conclude that radiation-induced dysfunction in the salivary glands is due to an impairment of exocytosis and a reduction of water secretion. The loss of aquaporin 5 and possibly other membrane-fusion proteins in acinar cells may be the major mechanism underlying such a dysfunction.  相似文献   

15.
Background information. TSPO (translocator protein), previously known as PBR (peripheral‐type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High‐affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. Results. Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam‐binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, 3H‐labelled PK 11195, as shown by Bmax and Kd values of 10.0±0.5 pmol/mg and 4.0±1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and α‐adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K+, Na+, Cl and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. Conclusions. High‐affinity ligand binding to mitochondrial TSPO modulates neurotransmitter‐induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

16.
J H Yu 《Prostaglandins》1986,31(6):1087-1097
Exogenously administered PGE1 or PGE2, like atropine, markedly decreased both the flow and calcium concentration of parasympathetically evoked rat parotid saliva; PGF2 alpha was less effective. Despite the fact that prostaglandins greatly reduced the Ca concentration of nerve-evoked saliva, they did not change the glandular Ca concentration of either control or parasympathetically stimulated parotid glands. Prostaglandins (20 micrograms/kg, i.a.) decreased the Na or K concentration of nerve-evoked parotid saliva, but at lower doses had no significant effect. PGE1, PGE2, PGF2 alpha or atropine markedly decreased flow rates of similarly evoked rat submandibular saliva. Prostaglandins and atropine, however, decreased the Na concentration and increased the K concentration of parasympathetically evoked submandibular saliva. PGF2 alpha, like atropine, increased the Ca concentration of such saliva. Drug vehicle, ethanol, slightly decreased the flow of both parotid and submandibular saliva but not the ion secretion, Endogenous prostaglandins themselves may not play a role in secretory activities during parasympathetic nerve stimulation of rat salivary glands, since administration of indomethacin, and inhibitor of prostaglandin biosynthesis, prior to or during nerve stimulation did not significantly alter nerve-evoked salivary secretion, The mechanisms by which prostaglandins modulate secretory responses of salivary glands during parasympathetic stimulation are not understood.  相似文献   

17.
Whole gland perfusion technique was applied to rat parotid glands to assess whether amylase affects fluid secretion. Control perfusion without any secretagogue evoked no spontaneous secretion. Carbachol (CCh 1 microM) induced both amylase and fluid secretion with distinctive kinetics. Fluid secretion occurred constantly at 40-120 microliter/g-min (average plateau was 60 microliter/g-min), whereas amylase secretion exhibited an initial peak (10 mg maltose/30 s per g wet w. of the gland), followed by a rapid decrease to reach a plateau level of 1 mg maltose/30 s later than 1.5-2 min. Isoproterenol (Isop 1 microM) alone did not induce fluid secretion although it evoked amylase secretion as measured in isolated perfused acini. Addition of Isop during CCh stimulation evoked a rapid and large rise in amylase secretion to 15 mg maltose/30 s accompanied by the increase in oxygen consumption. However, the fluid secretion exhibited a rather gradual decrease. These findings suggest that control of salivary fluid secretion is independent of the amylase secretion system induced by CCh and/or Isop. Morphological observations carried out by HR SEM and TEM revealed exocytotic profiles following Isop stimulation. CCh stimulation alone seldom showed -exocytotic profiles, suggesting a low incidence of amylase secretion during copious fluid secretion. Combined stimulation of CCh and Isop induced both vacuolation and exocytosis along intercellular canaliculi. During washout of secretagogues, lysosomal digestion of excess membrane took place.  相似文献   

18.
In vitro studies of cultured salivary gland cells and gland slices have indicated that there may be regulated translocation of aquaporin (AQP)-5 between the apical plasma membrane and intracellular compartments of the secretory cells. However, it remains unknown whether AQP-5 in salivary glands is subject to regulated trafficking in vivo. To examine this possibility, we have investigated the subcellular localization of AQP-5 in rat parotid and submandibular glands fixed in vivo under conditions of stimulated or inhibited salivary secretion. Immunofluorescence and immunoelectron microscopy was used to determine the subcellular distribution of AQP-5 in control conditions following the stimulation of secretion with pilocarpine (a muscarinic agonist) or epinephrine (an alpha-adrenoceptor agonist) or during inhibition of basal secretion with atropine (a muscarinic antagonist) or phentolamine (an alpha-adrenoceptor antagonist). Under control conditions, >90% of AQP-5 was associated with the apical plasma membrane of acinar and intercalated duct cells, with only rare gold particles associated with intracellular membrane domains. Pilocarpine treatment dramatically increased saliva production but had no discernible effect on AQP-5 distribution. However, the increased salivary secretion was associated with luminal dilation and the appearance of a markedly punctate AQP-5 labeling pattern due to clustering of AQP-5 at the microvilli (especially evident in the parotid gland) after 10 min of drug injection. No changes in the subcellular localization of AQP-5 were seen in response to epinephrine, atropine, or phentolamine treatment compared with control tissues. Thus AQP-5 is localized predominantly in the apical plasma membrane under control conditions, and neither the onset nor the cessation of secretion is associated in vivo with any significant short-term translocation of AQP-5 between intracellular structures and the apical plasma membrane.  相似文献   

19.
We investigated the expression and distribution of osteopontin in mouse salivary glands. Western blot analysis showed intense positive bands at the predicted molecular mass (about 60 kDa) in mouse parotid and sublingual glands. However, a cross-reacted band around 30 kDa was strongly detected in submandibular glands. Indirect immunofluorescent analysis showed that osteopontin was localized at the luminal (apical) membranes of the acinar cells in parotid and sublingual glands. However, it was not detected in acinar cells of submandibular glands. No expression was found in ductal cells of any glands. We also examined the expression of matrix metalloproteinase (MMP)-3 and -7. In parotid gland, MMP-3 was observed at 57 kDa, indicating a latent form, but MMP-7 was not detected. In contrast, MMP-7 definitely was observed at 28 kDa area in submandibular gland, whereas MMP-3 was not detected. These results suggest that osteopontin localizes at luminal sites of acinar cells and may be associated with saliva secretion in mouse salivary gland. It is also suggested that osteopontin may be cleaved by MMP-7 in mouse submandibular gland.  相似文献   

20.
Summary The ultrastructural localization of dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5) in rat submandibular and parotid glands was studied immunocytochemically by the peroxidase-antiperoxidase (PAP) method, using a monospecific antiserum against rat kidney DPP IV. There were no differences in the immunocytochemical localization of DPP IV between submandibular and parotid glands. In these glands, DPP IV was primarily found to be associated with the luminal and intercellular canalicular plasma membranes of acinar cells and with the luminal plasma membranes of intercalated and striated duct cells. Occasionally, immunoreaction of DPP IV was detected in cytoplasmic vesicles (vacuoles), lysosomes, and multivesicular bodies in some acinar cells as well as in ductal epithelial cells. Furthermore, the reaction product was also found within the lumina of peri-acinar and peri-ductal capillaries and in the cytoplasm of some fibroblasts in the interstitial connective tissue. These data suggest that DPP IV in the submandibular and parotid glands may play some role in the secretion or reabsorption processes of secretory proteins and peptides in these glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号