首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3 pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making them potent candidates for drug target.  相似文献   

2.
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites.  相似文献   

3.
The spread of insecticide resistance in Anopheles mosquitoes and drug resistance in Plasmodium parasites is contributing to a global resurgence of malaria, making the generation of control tools that can overcome these roadblocks an urgent public health priority. We recently showed that the transmission of Plasmodium falciparum parasites can be efficiently blocked when exposing Anopheles gambiae females to antimalarials deposited on a treated surface, with no negative consequences on major components of mosquito fitness. Here, we demonstrate this approach can overcome the hurdles of insecticide resistance in mosquitoes and drug resistant in parasites. We show that the transmission-blocking efficacy of mosquito-targeted antimalarials is maintained when field-derived, insecticide resistant Anopheles are exposed to the potent cytochrome b inhibitor atovaquone, demonstrating that this drug escapes insecticide resistance mechanisms that could potentially interfere with its function. Moreover, this approach prevents transmission of field-derived, artemisinin resistant P. falciparum parasites (Kelch13 C580Y mutant), proving that this strategy could be used to prevent the spread of parasite mutations that induce resistance to front-line antimalarials. Atovaquone is also highly effective at limiting parasite development when ingested by mosquitoes in sugar solutions, including in ongoing infections. These data support the use of mosquito-targeted antimalarials as a promising tool to complement and extend the efficacy of current malaria control interventions.  相似文献   

4.
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials, but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory promastigote isolates, but the mechanism leading to drug resistance in amastigote isolates is lagging behind. Here we describe a comparative proteomic analysis of a genetically related pair of antimonial-sensitive and -resistant Leishmania infantum axenic amastigote strains. The proteomics screen has highlighted a number of proteins differentially expressed in the resistant parasite. The expression of the protein argininosuccinate synthetase (ARGG) was increased in the drug resistant mutant while a decrease in the expression of the kinetoplastid membrane protein (KMP-11) correlated with the drug resistance phenotype. This proteomic screen highlighted several novel proteins that are putatively involved in resistance to antimonials.  相似文献   

5.

Background

Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions.

Results

Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter.

Conclusions

Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short-read genome resequencing can be used to reveal these signatures of drug selection at high resolution. The identities of three genes (and mutations within them) conferring different levels of chloroquine resistance generate insights regarding the genetic architecture and mechanisms of resistance to chloroquine and other drugs. Importantly, their orthologues may now be evaluated for critical or accessory roles in chloroquine resistance in human malarias P. vivax and P. falciparum.  相似文献   

6.
Antiretroviral protease inhibitors significantly potentiated the sensitivity of chloroquine-resistant malaria parasites to the antimalarial drug in vitro and in vivo. Ritonavir was found to be potent in potentiating CQ antimalarial activities in both -resistant and -sensitive lines. The mechanism by which the APIs modulate the CQ resistance in malaria parasites was further investigated. CQ-resistant parasites showed increased intracellular glutathione levels in comparison with the CQ-sensitive parasites. Treatment with APIs significantly reduced the levels of GSH and glutathione S-transferase activities in CQ-resistant parasites. Ritonavir also decreased glutathione reductase activities and glutathione peroxidase activities in CQ-resistant parasite line. Taken together, these results demonstrate that parasite GSH and GST may play an important role in CQ resistance and APIs are able to enhance the sensitivity of CQ-resistant malaria parasite to the drug by influencing the levels of GSH and the activities of the related enzymes.  相似文献   

7.
Entamoeba histolytica is a protozoan parasite responsible for invasive intestinal and extraintestinal amebiasis. The pathology of amebiasis is still poorly understood, which can be largely attributed to lack of molecular tools. Here we present the optimization of SNAP-tag technology via codon optimization specific for E. histolytica. The resultant SNAP protein is highly expressed in amebic trophozoites, and shows proper localization when tagged with an endoplasmic reticulum retention signal. We further demonstrate the capabilities of this system using super resolution microscopy, done for the first time in E. histolytica.  相似文献   

8.
Blastocystis is an extracellular, enteric pathogen that induces intestinal disorders in a range of hosts including humans. Recent studies have identified potential parasite virulence factors in and host responses to this parasite; however, little is known about Blastocystis-host attachment, which is crucial for colonization and virulence of luminal stages. By utilizing 7 different strains of the parasite belonging to two clinically relevant subtypes ST-4 and ST-7, we investigated Blastocystis-enterocyte adhesion and its association with parasite-induced epithelial barrier disruption. We also suggest that drug resistance in ST-7 strains might result in fitness cost that manifested as impairment of parasite adhesion and, consequently, virulence. ST-7 parasites were generally highly adhesive to Caco-2 cells and preferred binding to intercellular junctions. These strains also induced disruption of ZO-1 and occludin tight junction proteins as well as increased dextran-FITC flux across epithelial monolayers. Interestingly, their adhesion was correlated with metronidazole (Mz) susceptibility. Mz resistant (Mzr) strains were found to be less pathogenic, owing to compromised adhesion. Moreover, tolerance of nitrosative stress was also reduced in the Mzr strains. In conclusion, the findings indicate that Blastocystis attaches to intestinal epithelium and leads to epithelial barrier dysfunction and that drug resistance might entail a fitness cost in parasite virulence by limiting entero-adhesiveness. This is the first study of the cellular basis for strain-to-strain variation in parasite pathogenicity. Intra- and inter-subtype variability in cytopathogenicity provides a possible explanation for the diverse clinical outcomes of Blastocystis infections.  相似文献   

9.
Resistance of pathogens to drugs is a growing concern regarding many diseases. Parasites like Leishmania, Plasmodium and Entamoeba histolytica; and neoplastic cells, present the multidrug-resistant phenotype rendering chemotherapy ineffective. The acquired resistance of Leishmania to antimony has generated intense research on the mechanisms involved but the question has not yet been resolved. To test the hypothesis that drug efflux in Leishmania, as measured by flow cytometry using the fluorescent dye Rhodamine-123, is largely dependent on the number of efflux pumps an isolate can express, the amount of Pgp 170 molecules was assessed in ten field isolates (5 “resistant” and 5 “susceptible”) using: Western Blotting, Confocal and Transmission Electron Microscopy, and proteomics. Their survival after exposure to three antileishmanial drugs, in vitro, was evaluated and clinical data were compared to the in vitro results. All isolates were resistant to Glucantime but susceptible to Miltefosine, whilst Amphotericin B was more effective on the “susceptible” isolates. The MDR gene, expressing the transmembrane efflux pump Pgp 170, appears to play a key role in the phenomenon of drug resistance. When “susceptible” versus “resistant” parasites were compared, it was shown that the higher the number of Pgp 170 molecules the higher the Rhodamine-123 efflux from the parasite body and, when exposed to the drug, the number of efflux pumps increased. However, the rate of this increase was not linear and it is possible that there is a maximum number of Pgp 170 molecules an isolate can express. Nevertheless, the phenomenon is a complex one and other factors and proteins are involved in which the HSP-70 group proteins, detected in the “resistant” isolates, may play a significant role.  相似文献   

10.
11.
Drug resistant strains of the malaria parasite, Plasmodium falciparum, have rendered chloroquine ineffective throughout much of the world. In parts of Africa and Asia, the coordinated shift from chloroquine to other drugs has resulted in the near disappearance of chloroquine-resistant (CQR) parasites from the population. Currently, there is no molecular explanation for this phenomenon. Herein, we employ metabolic quantitative trait locus mapping (mQTL) to analyze progeny from a genetic cross between chloroquine-susceptible (CQS) and CQR parasites. We identify a family of hemoglobin-derived peptides that are elevated in CQR parasites and show that peptide accumulation, drug resistance, and reduced parasite fitness are all linked in vitro to CQR alleles of the P. falciparum chloroquine resistance transporter (pfcrt). These findings suggest that CQR parasites are less fit because mutations in pfcrt interfere with hemoglobin digestion by the parasite. Moreover, our findings may provide a molecular explanation for the reemergence of CQS parasites in wild populations.  相似文献   

12.
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.  相似文献   

13.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub–Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.  相似文献   

14.
Effect of dinitroaniline herbicides on the growth of Entamoeba histolytica   总被引:2,自引:0,他引:2  
The effect of the dinitroaniline herbicides oryzalin and trifluralin on the growth of Entamoeba histolytica was examined. Oryzalin inhibited the growth of E. histolytica strain HM-1:IMSS. Trifluralin was less effective than oryzalin for this parasite. Entamoeba histolytica was more resistant to these dinitroanilines than other parasitic protozoa examined so far, including Leishmania spp., Trypanosoma brucei, Plasmodium falciparum, Toxoplasma gondii, and Cryptosporidium parvum. Colchicine, a potent microtubule inhibitor of animal cells, was much less effective for E. histolytica, even at very high concentrations. A reptilian parasite, Entamoeba invadens strain IP-1, examined for comparison, was more resistant to these dinitroanilines than E. histolytica. Accumulation of E. histolytica trophozoites in mitosis was observed after culture in 100 microM oryzalin. The inhibitory effect of oryzalin on the growth of E. histolytica trophozoites was abrogated by removal of the drug after exposure to 100 microM for 2 days. In parallel to the recovery of growth after removal of the drug, the percentage of trophozoites in mitosis was reduced to a normal level. The results indicate that treatment of trophozoites with oryzalin arrests mitosis and that its effect is reversible. Therefore, oryzalin is a useful tool for studies relating to the cell cycle of this parasite.  相似文献   

15.
16.
We have selected piperaquine (PQ) and lumefantrine (LM) resistant Plasmodium berghei ANKA parasite lines in mice by drug pressure. Effective doses that reduce parasitaemia by 90% (ED90) of PQ and LM against the parent line were 3.52 and 3.93 mg/kg, respectively. After drug pressure (more than 27 passages), the selected parasite lines had PQ and LM resistance indexes (I90) [ED90 of resistant line/ED90 of parent line] of 68.86 and 63.55, respectively. After growing them in the absence of drug for 10 passages and cryo-preserving them at −80 °C for at least 2 months, the resistance phenotypes remained stable. Cross-resistance studies showed that the PQ-resistant line was highly resistant to LM, while the LM-resistant line remained sensitive to PQ. Thus, if the mechanism of resistance is similar in P. berghei and Plasmodium falciparum, the use of LM (as part of Coartem®) should not select for PQ resistance.  相似文献   

17.
Schistosomiasis is a prevalent and chronic helmintic disease in tropical regions. Treatment and control relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically relevant drug resistance emerge and spread. Therefore, to identify potential target proteins for new avenues of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of Schistosoma mansoni compared to the proteomes of two model organisms, the nematode, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster. Using the genome comparison software Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, impairment of motility), i.e., are essential genes/proteins. Of the 67 and 68 sequences generated for each workflow, 63 were identical in both sets, leading to a final set of 72 parasite proteins. All but one of these were expressed in the relevant developmental stages of the parasite infecting humans. Subsequent in depth manual curation of the combined workflow output revealed 57 candidate proteins. Scrutiny of these for ‘druggable’ protein homologs in the literature identified 35 S. mansoni sequences, 18 of which were homologous to proteins with 3D structures including co-crystallized ligands that will allow further structure-based drug design studies. The comparative chemogenomics strategy presented generates a tractable set of S. mansoni proteins for experimental validation as drug targets against this insidious human pathogen.  相似文献   

18.
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy.  相似文献   

19.
20.
Previous studies from this laboratory have dealt with the purification and biochemical characterization of ornithine decarboxylase (ODC) from Entamoeba histolytica. Enzyme compartmentalization has been described as a major mechanism in the regulation of polyamine metabolism. However, the subcellular location of ODC in the human parasite has remained unresolved. To examine this issue, we cloned the full-length gene (Ehodc) encoding for the parasite enzyme, whose open reading frame encodes for a peptide of 412 amino acids with an estimated molecular mass of 46 kDa that exhibits similarity to other ODCs. Heterologous overexpression of the gene allowed us to purify the recombinant protein (rEhODC) by metal affinity chromatography. The purified polypeptide was used to raise heteroclonal antibodies that were utilized to localize the enzyme in situ by immunofluorescence and confocal microscopy. EhODC was observed to be associated with the plasma membrane, in vesicles close to the plasma membrane and in the EhkOs organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号