首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effect of metal chelators on intraerythrocytic malarial parasites imply that trace metal have a vital role in the biology of these organisms. In the present work X-ray fluorometry was used to study the status of zinc and iron in human red blood cells infected with Plasmodium falciparum in culture conditions. It was found that while the iron level remains constant throughout the parasite cell cycle, that of zinc increases in parallel with parasite maturation to reach a 2.3-fold higher level than that of uninfected red blood cells. Compartment analysis of infected red blood cells indicated that most of this gain was associated with the parasite and some with the host-cell membrane. Analysis of the malarial pigment showed that the zinc/iron ratio was similar to that of red blood cells, implying the this compound, which results from the digestion of host-cell cytosol, sequesters the zinc of host metalloenzymes. Dipicolinic acid (DPA), like other chelators, was found to inhibit the intracellular development of the parasite with an ED50 of 1 mM. DPA does not penetrate into normal red blood cells but readily permeates into infected cells, although it does not leach out their zinc. It is uncertain whether the inhibitory effect of DPA is exerted through alterations of host cell metabolism or by directly affecting that of the parasite. The putative receptors of zinc in the infected red blood cell are discussed.  相似文献   

2.
Ken Okada 《FEBS letters》2009,583(2):313-319
The metabolic pathways in apicoplasts of human malaria parasites are promising drug targets. The apicomplexan parasites exhibit delayed cell death when their apicoplast is impaired, but the metabolic pathways within apicoplasts are poorly understood. A nuclear-encoded heme oxygenase (HO)-like protein with an apicoplast-targeted bipartite transit peptide was identified in the Plasmodiumfalciparum genome. Purified mature recombinant PfHO protein converted heme into bilirubin IXα as confirmed by high-performance liquid chromatography. In addition, PfHO required an iron chelator such as deferoxamine for complete activity. These observations lead to the conclusion that a novel enzymatic heme degradation system is present in human malaria parasites.  相似文献   

3.
We synthesized and evaluated new specific tridentate iron(III) chelators of 2,6-bis[hydroxyamino]-1,3,5-triazine (BHT) family for use in iron deprivation cancer therapy. Physical properties of BHT chelators are easily customizable allowing easy penetration through cellular membranes. Antiproliferative activity of new BHT chelators was studied on MDA-MB-231 and MiaPaCa cells and compared to a clinically available new oral iron chelator, deferasirox (DFX). The antiproliferative activity of new chelators was found to correlate with iron(III) chelation ability and some of analogs showed substantially higher antiproliferative activity than DFX.  相似文献   

4.
Malaria is the major life threatening parasitic disease and the cause of a global public health problem. The failure of vector eradication programs and the appearance and spread of drug resistant parasites have posed the urgent challenge of developing effective, safe and affordable anti-malarial drugs. The design of such drugs is largely based on the targeting of agents to the parasite-based machinery for host digestion and to the products of hemoglobin catabolism. Iron chelators, by depriving intracellular parasites from essential iron, lead to selective suppression of parasite growth. However, by acting on parasite-impaired macrophages, chelators can also expedite resumption of phagocytosis and elimination of parasites. In order to be clinically effective, chelators need to be maintained in the blood for extensive time periods. Therapeutic doses can be attained with appropriate drug combinations and formulations or delivery devices and these must be presented in a form well tolerated by the host. The early documentation that chelation therapy has activity against human malaria has paved the road for the design of novel and more efficient remedies based on short-term iron deprivation.  相似文献   

5.
《Fungal biology》2022,126(8):521-527
Manipulation of iron bioavailability in the banana rhizosphere may suppress Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc). However, iron starvation induced by application of synthetic iron chelators does not effectively suppress Fusarium wilt. It is unclear whether Foc can subvert iron chelators and thereby evade iron starvation through the synthesis of iron-scavenging secondary metabolites, called siderophores. In vitro studies were conducted using iron-deficient growth medium and medium supplemented with a synthetic iron chelator, 2,2′-dipyridyl, to mimic iron starvation in Foc Tropical Race 4 (Foc TR4). Concentration of extracellular siderophores increased three-fold (p < 0.05) in the absence of iron. Liquid chromatography-mass spectrometry analysis detected the hydroxamate siderophore, ferrichrome, only in the mycelia of iron-starved cultures. Moreover, iron-starved cultures exhibited a reduction in total cellular protein concentration. In contrast, out of the 20 proteinogenic amino acids, only arginine increased (p < 0.05) under iron starvation. Our findings suggest that iron starvation does not cause a remodelling of amino acid metabolism in Foc TR4, except for arginine, which is required for biosynthesis of ornithine, the precursor for siderophore biosynthesis. Collectively, our findings suggest that biosynthesis of siderophores, particularly ferrichrome, could be a counteractive mechanism for Foc TR4 to evade iron starvation.  相似文献   

6.

Key message

Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds.

Abstract

Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.
  相似文献   

7.
Fosmidomycin derivatives in which the hydroxamic acid group has been replaced by several bidentate chelators as potential hydroxamic alternatives were prepared and tested against the DXR from Escherichia coli. These results illustrate the predominant role of the hydroxamate functional group as the most effective metal binding group in DXR inhibitors.  相似文献   

8.
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5′-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites.  相似文献   

9.
Iron chelating agents, which permeate through erythrocytic and parasite membranes, are effective against Plasmodium falciparum in vitro. However, the protective effect in humans is transient. We examined the antiplasmodial capacity of several iron chelators in vitro and in vivo. The chelators 3/3hb/2m and 3/2hb/b (together, MoB) were more effective against P. falciparum in vitro than desferrioxamine (DFO) and Salicylaldehyde isonicotinoyl hydrazone (SIH) (together, DoS). Despite similar pharmacokinetics of all iron chelators, mice infected with Plasmodium vinckei and treated with MoB succumbed to malaria, whereas DoS-treated mice survived. However, even in the surviving mice, peak parasitemias were above 30%. These results indicate that the direct effects of the drugs on the parasites were not responsible alone for the complete recovery of the mice. We suggest that the recovery is related to differential effects of the drugs on various immune functions. We concentrated on the effect of the iron chelators on B cell and T cell proliferation and on allogeneic stimulation (MLR), interleukin-10 (IL-10), gamma-interferon (gamma-IFN), tumor necrosis factor-alpha (TNF-alpha), and radical production. All the iron chelators examined inhibited the in vitro proliferation of B cells and T cells, and MLR. This may explain why iron chelators are only slightly efficient in treating human malaria. However, the inhibitory effects of MoB on B cell and T cell proliferation and on MLR were more pronounced than those of DoS. In addition, the release of free radicals by effector cells was inhibited to a greater extent by MoB than by DoS. These results may explain why MoB, which was more efficient in vitro, was not effective in vivo. The DoS effects on the in vitro secretion of cytokines correlate with their in vivo effect; there was a decrease of IL-10 and a parallel increase in gamma-IFN and TNF-alpha production by human mononuclear cells. MoB, which could not rescue the animals from malaria, did not affect IL-10 and TNF-alpha, but reduced gamma-IFN levels. Identical results were obtained when using monocytes instead of mononuclear cells (except for gamma-IFN, which is not produced by monocytes). Our results indicate that an iron chelator, or any antiparasitic drug that kills the parasites in vitro, should also be selected for further evaluation on the basis of its reaction with immune components; it should not interfere with crucial protective immunological processes, but it may still alleviate parasitemia by positive immune modulation.  相似文献   

10.
Iron is an essential growth component in all living organisms and plays a central role in numerous biochemical processes due to its redox potential and high affinity for oxygen. The use of iron chelators has been suggested as a novel therapeutic approach towards parasitic infections, such as malaria, sleeping sickness and leishmaniasis. Known iron chelating agents such as Deferoxamine and the 3-hydroxypyridin-4-one (HPO) Deferiprone possess anti-parasitic activity but suffer from mammalian toxicity, relatively modest potency, and/or poor oral availability. In this study, we have developed novel derivatives of Deferiprone with increased anti-parasitic activity and reduced cytotoxicity against human cell lines. Of particular interest are several new derivatives in which the HPO scaffold has been conjugated, via a linker, to the 4-aminoquinoline ring system present in the known anti-malaria drug Chloroquine. We report the inhibitory activity of these novel analogues against four parasitic protozoa, Trypanosoma brucei, Trypanosoma cruzi, Leishmania infantum and Plasmodium falciparum, and, for direct comparison, against human cells lines. We also present data, which support the hypothesis that iron starvation is the major cause of growth inhibition of these new Deferiprone–Chloroquine conjugates in T. brucei.  相似文献   

11.
The uptake and expression of extracellular DNA has been established as a mechanism for horizontal transfer of genes between bacterial species. Such transfer can support acquisition of advantageous elements, including determinants that affect the interactions between infectious organisms and their hosts. Here we show that erythrocyte-stage Plasmodium falciparum malaria parasites spontaneously take up DNA from the host cell cytoplasm into their nuclei. We have exploited this finding to produce levels of reporter expression in P.falciparum that are substantially improved over those obtained by electroporation protocols currently used to transfect malaria parasites. Parasites were transformed to a drug-resistant state when placed into cell culture with erythrocytes containing a plasmid encoding the human dihydrofolate reductase sequence. The findings reported here suggest that the malaria genome may be continually exposed to exogenous DNA from residual nuclear material in host erythrocytes.  相似文献   

12.
In this paper, we present the responses of the white-rot fungus Perenniporia medulla-panis to iron availability with regard to alterations in growth, expression of cellular proteins, Fe3+-reducing activity, and Fe3+ chelators production. Iron supplementation stimulated fungal growth but did not result in a significant increase in biomass production. Catechol and hydroxamate derivatives were produced mainly under iron deficiency, and their productions were repressed under iron supplementation conditions. Perenniporia medulla-panis showed several cellular proteins in the range of 10-90 kDa. Some of them showed negative iron-regulation. Iron-supplemented medium also repressed both cell surface and extracellular Fe3+-reducing activities; however, the highest cell surface activity was detected at the initial growth phase, whereas extracellular activity increased throughout the incubation period. No significant production of chelators and extracellular Fe3+-reducing activity were observed within the initial growth phase, suggesting that the reduction of Fe3+ to Fe2+ is performed by ferrireductases.  相似文献   

13.
Iron accumulation has been suggested to contribute to an increase of the susceptibility to mycobacterial infections. In this study we tested the effect of an array of iron chelating ligands of the 3-hydroxy-4-pyridinone family, in the intramacrophagic growth of Mycobacterium avium. We found that bidentate chelators, namely N-alkyl-3-hydroxy-4-pyridinones and N-aryl-3-hydroxy-4-pyridinones, did not affect the growth of M. avium inside mouse macrophages. In the case of the hexadentate chelators, those synthesized using an alkylamine (CP262) or a benzene ring (CP252) to link the three bidentate units, did not have an inhibitory effect on intramacrophagic growth of M. avium while those synthesized from a tripodal structure to anchor the bidentate units were capable of inhibiting the intramacrophagic growth of M. avium. The molecule we designated CP777 had the strongest inhibitory activity. The growth-reducing activity of CP777 was abrogated when this molecule was saturated with iron. These results confirm that iron deprivation, by the use of iron chelating compounds, restricts M. avium growth and that new iron chelators offer an approach to controlling mycobacterial infections.  相似文献   

14.
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.  相似文献   

15.
Antisense oligonucleotides with iron binding hydroxamate linkages are designed to act as sequence-selective cleaving agents of complementary nucleic acids through Fenton chemistry. Oligothymidylate analogs with hydroxamate linkages were efficiently synthesized from coupling of nucleoside intermediates, activated as p-nitrophenyl carbonates, with hydroxylamine derivatized nucleosides. Iron binding studies showed that hydroxamate linked oligonucleotides are effective iron chelators when there are three nonadjacent internucleosidic hydroxamate linkages available in the same oligonucleotide molecule. However, analysis of the CD spectra of an oligothymidylate 16mer, which contained complete substitution of all phosphates with hydroxamates, indicated that the hydroxamate linkage was too rigid to allow the analog to base pair with the complementary DNA d(A16). Syntheses of mix-linked thymidine oligomers with up to three hydroxamate linkages incorporated in the center of the sequence are also reported. Iron binding of the thymidine oligomer with hydroxamate linkages was confirmed by matrix assisted laser desorption mass spectrometry analysis. Nuclease stability assays showed that the modified oligonucleotides have enhanced resistance toward nuclease S1 (endonuclease) compared to natural oligonucleotides. A thymidine 16mer with three hydroxamate linkages incorporated in the center of the sequence was shown to be able to bind with both iron and its complementary polyA strand. A small destablizing effect was observed when the phosphodiester linkage was changed to the hydroxamate linkage. Under Fenton chemistry conditions, this novel iron binding oligothymidylate analog cleaved the complementary DNA strand sequence-selectively.  相似文献   

16.
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites.  相似文献   

17.
18.
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important “Achilles' heel” for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a “double punch” mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine® and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial–mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the “expanding horizons” for iron chelators in selectively targeting cancer cells.  相似文献   

19.
The preparation and evaluation of chromogenic substrates for detecting bacterial glycosidase enzymes is reported. These substrates are monoglycoside derivatives of the metal chelators catechol, 2,3-dihydroxynaphthalene (DHN) and 6,7-dibromo-2,3-dihydroxynaphthalene (6,7-dibromo-DHN). When hydrolysed by appropriate bacterial enzymes these substrates produced coloured chelates in the presence of ammonium iron(III) citrate, thus enabling bacterial detection. A β-d-riboside of DHN and a β-d-glucuronide derivative of 6,7-dibromo-DHN were particularly effective for the detection of S. aureus and E. coli respectively.  相似文献   

20.
Two oral chelators, CP20 (deferiprone) and ICL670 (deferasirox), have been synthesized for the purpose of treating iron overload diseases, especially thalassemias. Given their antiproliferative effects resulting from the essential role played by iron in cell processes, such compounds might also be useful as anticancer agents. In the present study, we tested the impact of these two iron chelators on iron metabolism, in the HepaRG cell line which allowed us to study proliferating and differentiated hepatocytes. ICL670 uptake was greater than the CP20 uptake. The iron depletion induced by ICL670 in differentiated cells increased soluble transferrin receptor expression, decreased intracellular ferritin expression, inhibited 55Fe (III) uptake, and reduced the hepatocyte concentration of the labile iron pool. In contrast, CP20 induced an unexpected slight increase in intracellular ferritin, which was amplified by iron-treated chelator exposure. CP20 also promoted Fe(III) uptake in differentiated HepaRG cells, thus leading to an increase of both the labile pool and storage forms of iron evaluated by calcein fluorescence and Perls staining, respectively. In acellular conditions, compared to CP20, iron removing ability from the calcein-Fe(III) complex was 40 times higher for ICL670. On the whole, biological responses of HepaRG cells to ICL670 treatment were characteristic of expected iron depletion. In contrast, the effects of CP20 suggest the potential involvement of this compound in the iron uptake from the external medium into the hepatocytes from the HepaRG cell line, therefore acting like a siderophore in this cell model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号