首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A simple and reproducible HPLC method for the analysis of amphotericin B (AmB) in serum, lung and liver using natamycin as the internal standard was developed. AmB and natamycin were extracted from serum, lung and liver and were separated using an isocratic elution from a C18 reversed-phase column. The mobile phase consisted of acetonitrile-10 mM acetate buffer pH 4.0 (37:63, v/v). The HPLC system had two detectors in series. One was set at 303 nm and the other at 383 nm for the detection of natamycin and AmB, respectively. The retention times of AmB and natamycin were 15 and 6 min, respectively. The recovery efficiency was 96-70%. The limit of quantification was 0.1 μg/ml. The assay was reproducible, the within-day coefficient of variation (n=6) was <8% for serum, lungs and liver. The between-day variability (n=6) was <7.7% for serum, liver and lungs at 1 μg/ml or 1 μg/g tissue concentration. The assay was linear within the range 1–40 μg/ml (r2=0.999).  相似文献   

2.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

3.
Lamotrigine (lamictal) is a new anticonvulsant drug recently approved by the FDA for clinical use. Therapeutic monitoring of lamotrigine is useful for patient management (therapeutic range 1–4 μg/ml). Here we describe a gas chromatography–mass spectrometric identification and quantitation of lamotrigine after extraction from human serum and derivatization. Lamotrigine was extracted from alkaline serum with chloroform and derivatized with N-methyl-N-(tert.- butyldimethysilyl) trifluoroacetamide containing 2% tert.-butyldimethylchlorosilane. Oxazepam-d5 was used as an internal standard. The tert.-butyldimethylsilyl derivative of lamotrigine showed distinct molecular ions at m/z 483 and 485 as well as other peaks at m/z 426, 370 and 334 for unambiguous identification. The base peak was observed at m/z 199. Similarly, the tert.-butyldimethysilyl derivative of oxazepam-d5 showed molecular ions at m/z 519 and 521 along with other characteristic peaks at m/z 462, 376 and 318. For the analysis of lamotrigine, the mass spectrometer was operated in the selective ion monitoring mode. The within-run and between-run precisions were 4.3% (mean=3.01, S.D.=0.13 μg/ml) and 5.1% (mean=2.93, S.D.=0.15 μg/ml), respectively at a serum lamotrigine concentration of 3.0 μg/ml. The within-run and between-run precisions were 8.2% (mean=0.49, S.D.=0.04 μg/ml) and 10.6% (mean=0.47, S.D.=0.05 μg/ml), respectively at a serum lamotrigine concentration of 0.5 μg/ml. The assay was linear for serum lamotrigine concentrations of 0.5–20 μg/ml. The detection limit was 0.25 μg/ml. The assay was free from interferences from common tricyclic antidepressants, benzodiazepines, other common anticonvulsants, salicylate and acetaminophen.  相似文献   

4.
A HPLC–UV determination of clobazam and N-desmethylclobazam in human serum and urine is presented. After simple liquid–liquid extraction with dichloromethane the compounds and an internal standard diazepam were separated on a Supelcosil LC-8-DB column at ambient temperature under isocratic conditions using the mobile phase: CH3CN–water–0.5 M KH2PO4–H3PO4 (440:540:20:0.4, v/v and 360:580:60:0.4, v/v for serum and urine, respectively). The detection was performed at 228 nm with limits of quantification of 2 ng/ml for serum and 1 ng/ml for urine. Relative standard deviations for intra- and inter-assay precision were found below 8% for both compounds for all the tested concentrations. The described procedure may be easily adapted for several 1,4-benzodiazepines.  相似文献   

5.
The simultaneous determination of trimethoprim, sulphamethoxazole and N4-acetyl-sulphamethoxazole in serum and urine by high-performance liquid chromatography using sulphafurazole as internal standard is described. The separation was achieved on a reversed-phase column employing acetic acid—methanol as the mobile phase with spectrophotometric detection at 230 nm. Precise simultaneous quantitative analysis of the relative components has been achieved at levels of 0.1 μg/ml for trimethoprim and 1.0 μg/ml for both sulphamethoxazole and its N4-acetyl metabolize using 1 ml of serum or urine.  相似文献   

6.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

7.
A simple and selective ion-pair HPLC method has been developed for the analysis of clarithromycin in aqueous solutions and in gastric juice. A Hypersil ODS 5-μm (150 × 4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer (pH 4.6) containing 5 mM 1-octanesulphonic acid (50:50, v/v). The column temperature was 50°C and detection was by UV absorption (210 nm). The limits of detection of 50-μl samples were 0.4 μg/ml (aqueous) and 0.78 μg/ml (0.5 ml gastric juice) or better. The assay was linear in the range of 1.56 to 100 μg/ml with r2 values greater than 0.99. The recovery from the gastric juice samples was 98.5±2.9%. The method was applied successfully to determine the stability of clarithromycin in 0.01 M HCl and gastric juice.  相似文献   

8.
Incubation of root tips in cycloheximide (CHM) at concentrations of 0.3–50 μg/ml inhibits the incorporation of [14C]leucine by 40–100% within 2 h. A depression in the incorporation of [3C]thymidine was observed after a 2-h incubation in CHM solution at 1 μg/ml.In root tips exposed for 2 h to CHM at 1 μ/ml the mitotic activity of cells was severely depressed within 15 h of recovery. Metaphases appearing after 20 h carried infrequent aberrations of the chromatid type. CHM at this concentration had no effect on the yield of aberrations induced by the alkylating agents diepoxybutane (DEB) and N-ethyl-N-nitrosourea (ENU) when applied as post-treatment.  相似文献   

9.
A simple, accurate and precise high-performance liquid chromatographic method was developed and validated for the determination of trovafloxacin, a new quinolone antibiotic, in serum and urine. Following solid-phase extraction, chromatographic separation was accomplished using a C18 column with a mobile phase consisting of 0.04 M H3PO4-acetonitrile-tetrabutylammonium hydroxide-0.005 M dibutyl amine phosphate (D-4) reagent (83:16.85:0.05:0.1, v/v), pH 3. Trovafloxacin and the internal standard (a methyl derivative of trovafloxacin) were detected by ultraviolet absorbance at 275 nm. The lower limit of quantification for trovafloxacin was 0.1 μg/ml and the calibration curves were linear over a concentration range of 0.1 to 20..0 μg/ml (r2 = 0.9997). The average recoveries were greater than 70% for both trovafloxacin and internal standard. The intra-day and inter-day coefficients of variation were generally less than 5% in urine and serum over the concentration range of 0.1 to 20.0 μg/ml. Human serum samples could be stored for up to 12 months at −20°C and urine samples could be stored up to 18 months at −80°C.  相似文献   

10.
A high-performance liquid chromatogaphic method was developed for determining the concentrations of ticarcillin (TIPC) epimers in human plasma and urine. Samples were prepared for HPLC analysis with a solid-phase extraction method and the concentrations of TIPC epimers were determined using reversed-phase HPLC. The mobile phase was a mixture of 0.005 M phosphate buffer (pH 7.0) and methanol (12:1, v/v) with a flow-rate of 1.0 ml/min. TIPC epimers were detected at 254 nm. Baseline separation of the two epimers was observed for both plasma and urine samples with a detection limit of ca. 1 μg/ml with a S/N ratio of 3. No peaks interfering with either of the TIPC epimers were observed on the HPLC chromatograms for blank plasma and urine. The recovery was more than 80% for both plasma and urine samples. C.V. values for intra- and inter-day variabilities were 0.9–2.1 and 1.1–6.4%, respectively, at concentrations ranging between 5 and 200 μg/ml. The present method was used to determine the concentrations of TIPC epimers in plasma and urine following intravenous injection of TIPC to a human volunteer. It was found that both epimers were actively secreted into urine and that the secretion of TIPC was not stereoselective. Plasma protein binding was also measured, which revealed stereoselective binding of TIPC in human plasma.  相似文献   

11.
An ultrafiltration-light absorption spectrometric method for soluble molybdate-reactive silicon was assessed and applied to bovine and ovine blood plasma and sera, giving precise analytical results. Interfering protein above molecular weight 10,000–25,000 was removed by ultrafiltration, and silicon in ultrafiltrates was quantitated by measuring light absorption at 810 nm of the 1,2,4-aminonaphthol sulfonic acid/ascorbic acid-reduced silicomolybdate. Chemical interferences on the color-forming reaction of remaining blood components were tested by measuring recoveries of silicon added to real blood plasma samples and to synthetic blood plasma solutions, the latter containing typical levels of the major ions Na+, K+, Ca2+, HCO3?, and Cl?, together with varying quantities of the potential interferants (amount per analytical reaction): phosphate (0–0.5 mg P), ferric ion (0–3 mg), fluoride (0–1.25 mg), vanadate (0–0.5 mg V), arsenate (0–10 μg As), and germanate (0–0.5 μg Ge). The mean recovery of added 0.8–9 μg silicon/g of bovine and ovine plasma was 97.7% (SE = 1.0, n = 17); the mean recovery of 1 and 5 μg silicon from synthetic blood plasma solutions with interferant levels up to 50-fold that in normal plasma was 99.2% (SE = 0.3, n = 47). Silicon concentrations found in bovine and ovine blood plasma and sera were typically around 7 μg/ml with procedural reagent blanks consistently low at a mean of 0.12 μg/test (SD = 0.011, n = 20). The silicon level in Center for Disease Control bovine serum (reference specimen Lot R-2274) was found to be (mean ± SE, n = 10) 1.147 ± 0.013 μg/g or 1.172 ± 0.013 μg/ml (25°C). The method detectivity (detection limit) was estimated at 0.03 μg.  相似文献   

12.
《Insect Biochemistry》1990,20(2):165-171
The concentrations of tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, N-acetyl 5-hydroxytryptamine and N-acetyl dopamine were determined in the cerebral ganglia, haemolymph and Malpighian tubules of the cockroach Periplaneta americana, using high performance liquid chromatography with electrochemical detection. Injected 5-hydroxytryptamine was rapidly removed from the haemolymph with a concomitant elevation of circulating N-acetyl 5-hydroxytryptamine and little accumulation of 5-hydroxytryptamine in the cerebral ganglia. N-acetyl 5-hydroxytryptamine and N-acetyl dopamine were also rapidly removed from the haemolymph. Incubation of haemolymph from 5-hydroxytryptamine-injected insects and glucosidase or phosphatase, indicated that most of the injected 5-hydroxytryptamine had been converted to a sugar conjugate of N-acetyl 5-hydroxytryptamine. Whole haemolymph did not catabolize 5-hydroxytryptamine or N-acetyl 5-hydroxytryptamine whereas Malpighian tubules N-acetylated both 5-hydroxytryptamine and dopamine and metabolized N-acetyl 5-hydroxytryptamine. Injection of p-chlorophenylalanine (200 and 500 μg/g) had no effect on 5-hydroxytryptamine concentrations in the cockroach cerebral ganglia.  相似文献   

13.
A sensitive high-performance liquid chromatographic assay has been developed for measuring plasma concentrations of methotrexate and its major metabolite, 7-hydroxymethotrexate. Methotrexate and metabolite were extracted from plasma using solid-phase extraction. An internal standard, aminopterin was used. Chromatographic separation was achieved using a 15-cm poly(styrene-divinylbenzene) (PRP-1®) column. This column is more robust than a silica-based stationary phase. Post column, the eluent was irradiated with UV light, producing fluorescent photolytic degradation products of methotrexate and the metabolite. The excitation and emission wavelengths of fluorescence detection were at 350 and 435 nm, respectively. The mobile phase consisted of 0.1 M phosphate buffer (pH 6.5), with 6% N,N-dimethylformamide and 0.2% of 30% hydrogen peroxide. The absolute recoveries for methotrexate and 7-hydroxymethotrexate were greater than 86%. Precision, expressed as a coefficient of variation (n=6), was <10% at each of five methotrexate concentrations in the range 2.5–50 ng/ml. The limits of quantitation of methotrexate were 1 and 2.5 ng/ml for methotrexate and 7-hydroxymethotrexate, respectively (using 1 ml plasma). A robust HPLC method has been developed for the reproducible quantitation of methotrexate in plasma of patients taking a weekly dose of methotrexate for rheumatoid arthritis.  相似文献   

14.
A high-performance liquid chromatographic method is described for the determination of citalopram [1-(3-(dimethylaminopropyl)-1-(4-fluorophenyl)-5-phthalancarbonitrile] and its two main metabolites (the methylamino and amino derivatives). The compounds were extracted from alkaline plasma with diethyl ether. The combined ether layers were evaporated after addition of 50 μl of 0.1 N HCl. The residual extracts were purified with diethyl ether and 20 μl were injected into a Spherisorb ODS 5-μm column with acetonitrile–0.6% phosphate buffer pH 3 (55:45, v/v) as the mobile phase. Using a fluorescence detector the detection limits are 1 ng/ml of plasma for citalopram and the methylamino metabolite and 0.5 ng/ml for the amino metabolite.  相似文献   

15.
An assay for the quantitative determination of the mercapturic acid conjugate of N,N′,N″-triethylenethiophosphoramide (thioTEPA-mercapturate) in human urine has been developed. ThioTEPA-mercapturate, a recently identified metabolite of the alkylating anticancer agent thioTEPA, was analyzed using LC–MS and with direct sample injection. Sulphadiazine was used as internal standard. Linearity was accomplished in the therapeutic relevant range of 1–25 μg/ml; recovery was 84% and both accuracy and precision were less than 20% for the lower limit of quantification (1.0 μg/ml) and less than 10% for the other concentration levels. The stability of thioTEPA-mercapturate proved to be satisfactory over a period of 2 months, when kept at −80°C. ThioTEPA-mercapturate urine concentrations of two patients treated with thioTEPA are presented demonstrating the applicability of the assay for clinical samples.  相似文献   

16.
Conditions for the extractive alkylation of eight sulphonylurea hypoglycemic drugs have been evaluated. Extractive methylation of the compounds was achieved within 90 min using tetrabutylammonium as counter-ion (0.1 M at pH = 6.9) with 5% methyl iodide in dichloromethane as organic phase. Mass spectral analysis showed derivatives methylated at the sulphonamide nitrogen. A higher pH or use of tetrapentylammonium as counter-ion caused hydrolysis of the sulphonylureas.The derivatives showed a high electron-capture response with minimum concentrations detectable in the range 1–4 × 10?16 moles sec?1.Therapeutic plasma concentrations of glipizide and tolbutamide were determined by direct extractive methylation of the compounds from the plasma sample. The glipizide derivative was determined by electron-capture gas chromatography down to about 20 ng/ml in a 0.5-ml plasma sample. The relative standard deviation at the 0.2 μg/ml level of glipizide was 6% (n=6). The corresponding figure in the determination of tolbutamide at the 10 μg/ml level was 3% (n=10).  相似文献   

17.
A micellar electrokinetic capillary chromatography (MECC) method was developed for the separation of the 3-O-glucuronides of entacapone and its (Z)-isomer, the two main urinary metabolites of entacapone in humans. Entacapone is a novel, potent inhibitor of catechol-O-methyltransferase (COMT) intended for use as an adjunct in the treatment of Parkinson’s disease. Urine samples spiked with synthetic 3-O-glucuronides were used to study the effects of running buffer pH, composition and applied voltage on separation of the closely migrating glucuronides. The 3-O-glucuronide of nitecapone, was used as internal standard. The greatest improvement in separation was achieved by increasing the running buffer ionic concentration. Changes in pH had little effect on the separation, whereas increase in sodium dodecyl sulfate (SDS) concentration slightly improved resolution. Baseline separation and good selectivity relative to urine components were achieved by using a phosphate (25 mM)–borate (50 mM)–SDS (20 mM) running buffer, pH 7.0, in a 75 μm×60/67 cm fused-silica capillary at 15 kV and a 335 nm cut-off filter in the UV detector. The limits of detection (LOD) at a signal-to-noise ratio of 3 were about 0.25 μg/ml (5.2·10 −7M) (injection 0.5 p.s.i./8 s). The linear detection range was 2–100 μg/ml (r2>0.999). Good repeatability of injection and relative migration times were obtained.  相似文献   

18.
An isocratic high-performance liquid chromatographic method with automated solid-phase extraction has been developed to determine foscarnet in calf and human serums. Extraction was performed with an anion exchanger, SAX, from which the analyte was eluted with a 50 mM potassium pyrophosphate buffer, pH 8.4. The mobile phase consisted of methanol–40 mM disodium hydrogenphosphate, pH 7.6 containing 0.25 mM tetrahexylammonium hydrogensulphate (25:75, v/v). The analyte was separated on a polyether ether ketone (PEEK) column 150×4.6 mm I.D. packed with Kromasil 100 C18, 5 μm. Amperometric detection allowed a quantification limit of 15 μM. The assay was linear from 15 to 240 μM. The recovery of foscarnet from calf serum ranged from 60.65±1.89% for 15 μM to 67.45±1.24% for 200 μM. The coefficient of variation was ≤3.73% for intra-assay precision and ≤7.24% for inter-assay precision for calf serum concentrations ranged from 15 to 800 μM. For the same samples, the deviation from the nominal value ranged from −8.97% to +5.40% for same day accuracy and from −4.50% to +2.77% for day-to-day accuracy. Selectivity was satisfactory towards potential co-medications. Replacement of human serum by calf serum for calibration standards and quality control samples was validated. Automation brought more protection against biohazards and increase in productivity for routine monitoring and pharmacokinetic studies.  相似文献   

19.
The reversed-phase HPLC methods were developed to determinate the covalently bound protein adducts of the novel anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) via its glucuronides after releasing aglycone by alkaline hydrolysis in human plasma and human serum albumin (HSA). An aliquot of 75 μl of the mixture was injected onto a Spherex C18 column (150×4.6 mm; 5 μm) at a flow-rate of 2.5 ml/min. The mobile phase comprising of acetonitrile:10 mM ammonium acetate buffer (24:76, v/v, pH 5.8) was used in an isocratic condition, and DMXAA was detected by fluorescence. The method was validated with respect to recovery, selectivity, linearity, precision, and accuracy. Calibration curves for DMXAA were constructed in the concentration range of 0.5–40 μM in washed blank human plasma or HSA prior to alkaline hydrolysis. The difference between the theoretical and calculated concentration and the relative standard deviation were less than 10% at all quality control (QC) concentrations. The limit of detection for the covalent adduct in human plasma or HSA is 0.20 μM. The methods presented good accuracy, precision and sensitivity for use in the preclinical and clinical studies.  相似文献   

20.
A rapid method for the simultaneous determination of sulfamonomethoxine (SMM), miloxacin (MLX) and oxolinic acid (OA) in serum and muscle of cultured fish by high-performance liquid chromatography has been developed. A Hisep shielded hydrophobic phase column (15 cm×4.6 mm I.D.) and a mobile phase of 0.05 M citric acid-0.2 M disodium hydrogenphosphate buffer, pH 2.5 in 10 mM tetra-n-butyl ammonium bromide-acetonitrile (85:15) with ultraviolet detection at 265 nm were used. The recoveries of SMM, MLX and OA from serum and muscle samples were 72–101%. The detection limits of the three drugs were 0.05–0.1 μg/ml or g of sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号