首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive assay was developed for the measurement of olanzapine in rat brain tissue using HPLC with electrochemical detection. The assay has a lower limit of quantitation of 0.5 ng/ml in tissue homogenate and utilizes a liquid–liquid extraction followed by reversed-phase HPLC for the quantitative analysis of olanzapine. The method provided a linear response for olanzapine over a concentration range of 0.5–100 ng/ml with a coefficient of determination (r2) greater than 0.9995. The extraction efficiencies of olanzapine and internal standard (LY170158) were greater than 82% in brain tissue. The intra-assay and inter-assay relative errors ranged from −5.38 to 17.60% and −3.25 to 10.53%, respectively. The intra-assay and inter-assay RSD values were in the range of 1.12 to 6.96% and 3.78 to 6.68%. Long-term stability studies showed that brain tissue homogenate samples spiked with olanzapine and internal standard are stable at −70°C for at least 110 days. However, a room temperature stability study showed that olanazapine was not stable in brain homogenate if the sample was exposed at 25°C longer than 2 h. This method has been used for the study of the disposition and pharmacokinetics of olanzapine in male Sprague–Dawley rats.  相似文献   

2.
Sample pretreatment using solid-phase extraction (SPE) on cartridges filled with small-particle Styrosorb porous polystyrene-based sorbent has been used in the analysis of propranolol enantiomers in human serum by high-performance liquid chromatography (HPLC) with fluorescent detection. SPE on Sep-Pak C18 cartridges was used as a reference pretreatment method. The propranolol content of the samples was determined by achiral normal-phase HPLC and the enantiomeric ratio of propranolol (S/R) was then determined by chiral HPLC on a column with silica-bonded cellulose-tris(3,5-dimethylphenyl carbamate). Recoveries of propranolol from serum using SPE on Styrosorb and C18 phases were 97±5% and 96±5%, respectively. Detection and quantification limits for propranolol enantiomers were 4 and 7 ng/ml, respectively.  相似文献   

3.
An analytical method has been developed and validated for the quantitation of CP-88,059 in human serum. The compound and internal standard were extracted from serum by solid-phase extraction with a weak cation-exchange phase. The analytes were resolved from endogenous interferences using narrow-bore (2.1 mm I.D.) C18 reversed-phase HPLC. Column effluent was monitored by UV absorbance detection at 215 nm. The standard curve range was 1 to 250 ng/ml. The accuracy and precision values for the method were within ±10% and ±15%, respectively. A four-fold detectability enhancement was achieved using a 2.1 mm I.D. HPLC column relative to the more common 4.6 mm I.D. column. A performance comparison was made between the 2.1 mm I.D. column used for validation and a 4.6 mm I.D. column with the same stationary phase.  相似文献   

4.
The tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) is undergoing evaluation as a potential new anticancer agent. We have developed a specific and sensitive reversed-phase HPLC assay for AG1478 in mouse plasma. The method involves a rapid and simple extraction process followed by separation on a Symmetry C8 stationary phase with a gradient of acetonitrile in ammonium acetate buffer. A linear response was achieved over the concentration range of 0.2–100 μM using multilevel calibration with internal standard method of calculation. Inter- and intra-assay accuracy and precision were better than ±10%. The limit of quantitation was 0.2 μM. We have used this method to study the preclinical pharmacokinetics of this new agent in mice.  相似文献   

5.
The renin inhibitor Ro 42-5892 has been found to be very potent, thereby necessitating a sensitive assay method for the evaluation of its pharmacokinetics in man. We report here the development of a very sensitive and selective HPLC assay for the analysis of this compound in human plasma. Ro 42-5892 was extracted from plasma with dichloromethane, derivatized with 2,4-dinitrofluorobenzene and then chromatographed on a Novapak C18 column (150 × 3.9 mm I.D.) with acetic acid buffer (pH 7)-acetonitrile (100:85). Detection was performed by irradiation at 254 nm, followed by electrochemical oxidation at 550 mV. The extraction recovery of Ro 92-5 from human plasma (mean 102%) was quantitative. With this method a limit of quantitation of 0.3 ng/ml was achieved. The assay was linear up to 5 ng/ml, had acceptable inter-assay precision (12.2%) and accuracy (9.3%) and was successfully tested for selectivity. This assay was successfully applied to over 250 samples from a pharmacokinetic study in hypertensive patients.  相似文献   

6.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   

7.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

8.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

9.
An isocratic high-performance liquid chromatographic method with automated solid-phase extraction has been developed to determine foscarnet in calf and human serums. Extraction was performed with an anion exchanger, SAX, from which the analyte was eluted with a 50 mM potassium pyrophosphate buffer, pH 8.4. The mobile phase consisted of methanol–40 mM disodium hydrogenphosphate, pH 7.6 containing 0.25 mM tetrahexylammonium hydrogensulphate (25:75, v/v). The analyte was separated on a polyether ether ketone (PEEK) column 150×4.6 mm I.D. packed with Kromasil 100 C18, 5 μm. Amperometric detection allowed a quantification limit of 15 μM. The assay was linear from 15 to 240 μM. The recovery of foscarnet from calf serum ranged from 60.65±1.89% for 15 μM to 67.45±1.24% for 200 μM. The coefficient of variation was ≤3.73% for intra-assay precision and ≤7.24% for inter-assay precision for calf serum concentrations ranged from 15 to 800 μM. For the same samples, the deviation from the nominal value ranged from −8.97% to +5.40% for same day accuracy and from −4.50% to +2.77% for day-to-day accuracy. Selectivity was satisfactory towards potential co-medications. Replacement of human serum by calf serum for calibration standards and quality control samples was validated. Automation brought more protection against biohazards and increase in productivity for routine monitoring and pharmacokinetic studies.  相似文献   

10.
A sensitive high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantitation of the novel anticancer agent topotecan and topotecan as the total of its lactone and carboxylate forms in human plasma. Linear response in analyte standard peak area were observed over the concentration range 0.05–10 ng/ml using 100-μl plasma samples. The instability of the drug in the biological matrix necessitated that the plasma fraction was obtained within 5 min after blood sampling by centrifugation, immediately followed by protein precipitation with cold methanol (−30°C). Stability studies have indicated that topotecan is stable in these methanolic extracts for at least 4.5 months at −30°C and 2 months at −70°C. For the total determination of the lactone plus lactone ring-opened forms of the drug as topotecan, plasma samples were deproteinated with methanol and, subsequently, acidified with 7% (v/v) perchloric acid. Plasma samples for the measurement of total levels of the lactone and the ring-opened forms of the topotecan were stable for at least 4.5 months when stored at −30°C. After centrifugation, the supernatants were analysed by HPLC using a Zorbax SB-C18 Stable Bond column and methanol-0.1 M hexane-1-sulfonic acid in methanol-0.01 M N,N,N′,N′-tetramethylethylenediamine (TEMED) in distilled water pH 6.0 (25:10:65, v/v) as the mobile phase. Detection was performed fluorimetrically. Within-run and between-run precision was always less than 12.1% in the concentration range of interest (0.05–10.0 ng/ml). The limit of quantitation is 0.05 ng/ml. Accuracy measurements ranged between 87.6 and 113.5%.  相似文献   

11.
A liquid chromatographic–mass spectrometric (LC–MS) assay was developed and validated for the determination of itraconazole (ITZ) in rat heparinized plasma using reversed-phase HPLC combined with positive atmospheric pressure ionization (API) mass spectrometry. After protein precipitation of plasma samples (0.1 ml) with acetonitrile containing nefazodone as an internal standard (I.S.), a 50-μl aliquot of the supernatant was mixed with 100 μl of 10 mM ammonium formate (pH 4.0). An aliquot of 25 μl of the mixture was injected onto a BDS Hypersil C18 column (50×2 mm; 3 μm) at a flow-rate of 0.3 ml/min. The mobile phase comprising of 10 mM ammonium formate (pH 4) and acetonitrile (60:40, v/v) was used in an isocratic condition, and ITZ was detected in single ion monitoring (SIM) mode. Standard curves were linear (r2≥0.994) over the concentration range of 4–1000 ng/ml. The mean predicted concentrations of the quality control (QC) samples deviated by less than 10% from the corresponding nominal values; the intra-assay and inter-assay precision of the assay were within 8% relative standard deviation. Both ITZ and I.S. were stable in the injection solvent at room temperature for at least 24 h. The extraction recovery of ITZ was 96%. The validated assay was applied to a pharmacokinetic study of ITZ in rats following administration of a single dose of itraconazole (15 mg/kg).  相似文献   

12.
A sensitive method for the determination of human serum trans-phylloquinone levels has been developed. Serum samples were extracted with hexane and subjected to preliminary separation on a silica semipreparative HPLC column with an 80% recovery as determined by the addition of [3H]phylloquinone. The portion of the eluate containing trans-phylloquinone was dried and injected into a μBondapak C-18 analytical HPLC column, and the concentration of the vitamin was determined by reductive electrochemical detection utilizing a glassy carbon electrode and and AgAgCl reference electrode. The presumed vitamin peak was confirmed as trans-phylloquinone by rechromatography at different HPLC conditions, hydrodynamic voltamography, and photodegradation. As little as 300 pg/ml rans-phylloquinone could be detected, and normal human serum concentrations were found to be in the range of 1 ng/ml.  相似文献   

13.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the determination of six β-blockers; atenolol, nadolol, timolol, metoprolol, oxprenolol, and alprenolol.The chromatographic separation was performed using a μBondapack C18 column, a mobile phase of acetonitrile-water (40:60), containing 5 mM KH2PO4/K2HPO4 proved to be optimal at a 1.3 ml/min flow-rate, and a pH of 6.5. The temperature was optimized at 30±0.2°C. The amperometric detector, equipped with a glassy carbon electrode, was operated at 1300 mV versus Ag/AgCl in the direct current mode. The method was applied to the determination of these compounds at two concentration levels: ppm and ppb (ng/ml), obtaining relative standard deviations lower than 5% at ppm levels and lower than 10% at ppb levels, and quantitation limits ranging from 15 ppb to 500 ppb.The method was applied to the screening of β-blockers in spiked urine samples, with a total elution time lower than 12 min, obtaining the best recoveries for timolol and metoprolol (never greater than 93%). These recoveries together with the low limits of quantitation achieved, allows its application to doping analysis in human urine.  相似文献   

14.
A robust, fully automated assay procedure for the determination of rosiglitazone (I, BRL-49653) in human plasma has been developed. Plasma concentrations of I were determined using automated sequential trace enrichment of dialysates (ASTED) coupled to reversed-phase high-performance liquid chromatography. Sequential automated dialysis of human plasma samples was followed by concentration of the dialysate by trace enrichment on a C18 cartridge. Drug and internal standard, SB-204882 (II) were eluted from the trace enrichment cartridge by mobile phase (0.01 M ammonium acetate, pH 8–acetonitrile, 65:35, v/v) onto the HPLC column (a Novapak C18, 4 μm, 100×5 mm radial compression cartridge) protected by a Guard-Pak C18 cartridge. The compounds were detected by fluorescence detection, using an excitation wavelength of 247 nm, and emission wavelength of 367 nm. The lower limit of quantitation of the method was 3 ng/ml (200 μl aliquot) with linearity demonstrated up to 100 ng/ml. Within- and between-run precision and accuracy of determination were better than 10% across the calibration range. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can be safely stored for at least 7 months at −20°C. This method has been successfully utilised to provide pharmacokinetic data throughout the clinical development of rosiglitazone.  相似文献   

15.
A high-performance liquid chromatographic assay is described as a routine analytical method for the determination of fumagillin in rainbow trout muscle tissue. Muscle tissue samples (1 g) containing fumagillin were deproteinized with 8 ml of an acetonitrile-water mixture (2:6, v/v). The extracts were purified with a Bond Elut Octyl C8 cartridge column, washed with a water-methanol mixture (95:5, v/v; 4 ml) and fumagillin was eluted with acetonitrile (1 ml). Analytical separations were performed by reversed-phase HPLC with UV detection at 351 nm under gradient conditions. The mobile phase was acetonitrile-0.005 M tetrabutyl ammonium phosphate in water (pH 7.8). The assay is specific and reproducible within the fumagillin range of 20–1000 ng/g and recovery at 20 ng/g was 69.2%. Sample preparation involves the use of a robotic sample preparation system. Gravimetric validation of all operations enabled Good Laboratory Practices to be observed.  相似文献   

16.
A sensitive, specific and rapid reversed-phase high-performance liquid chromatographic (HPLC) assay was developed for the quantitation of melphalan and its hydrolysis products in samples from the isolated perfusion of human and rat limbs. Samples of perfusate, plasma and tissue were analysed, following methanol precipitation, using a phenyl column and fluorescence detection. Dansyl-arginine (38 μg ml−1) was employed as the internal standard. Good resolution was observed allowing quantitation of melphalan, monohydroxymelphalan (MOH) and dihydroxymelphalan (DOH) in perfusate and plasma and melphalan in tissue. The mean recoveries of melphalan, MOH and DOH from perfusate and plasma were all 100 ± 10%. The recovery of melphalan in tissue was 93.5%. A linear response was demonstrated for melphalan in the concentration range 1.8–56.8 μg ml−1, for DOH in the concentration range 0.5–30.0 μg ml−1 and for MOH in the range 1.4–25.1 μg ml−1, in perfusate and plasma. The lower limits of quantitation of melphalan, MOH and DOH in perfusate and plasma were 1.4, 2.4 and 1.2 ng on column, respectively, and 7.2 ng of melphalan on column in tissue. Intra-assay coefficients of variation (C.V.) for melphalan, MOH and DOH, at low and high concentrations were all less than 5% and the inter-assay C.V.s were less than 9%. An ultra-filtration study to determine the protein binding of melphalan and the hydrolysis products showed that the unbound fractions (fu) of melphalan in buffer containing dextran and bovine serum albumin were 0.873 and 0.521, respectively. The assay was used to quantitate melphalan and its hydrolysis products in samples from isolated perfusions in the human limb and rat hindlimb.  相似文献   

17.
A simple reversed-phase high-performance liquid chromatography (HPLC) method for the simultaneous determination of caffeine and paraxanthine in human serum is described. Serum proteins are precipitated with perchloric acid and the resulting supernatant neutralized for direct injection onto an HPLC column. The method uses a phosphate–methanol mobile phase (85:15, v/v) at pH 4.9 with a flow-rate of 1.75 ml/min and quantitation is by UV absorbance at 274 nm. Elution times are approximately 18 min for caffeine and 8 min for paraxanthine. Theobromine and theophylline have elution times of 5.4 and 9.4 min and do not interfere in the assay. The intra-assay and between-assay means for precision and accuracy for both drugs are: 4.5% C.V. and 3.3% deviation. The sensitivity of the method is 50 ng/ml for each drug.  相似文献   

18.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed and validated for the measurement of (−)-2′-deoxy-3′-thiacytidine (3TC) in human serum. The method included precipitation of serum proteins by trichloroacetic acid (20%, w/v) treatment followed by centrifugation. The resulting supernatant was directly injected and 3TC was isocratically chromatographed on a reversed-phase C18 column using a mixture of phosphate buffer and methanol (88.3:11.7, v/v) and monitored at 280 nm. The limit of quantitation was 20 ng/ml using 100 μl of serum. The standard curve was linear within the range of 20–10 000 ng/ml. Replicate analysis of three quality control samples (40–1500 ng/ml) led to satisfactory intra- and itner-assay precision (coefficient of variation from 3.0 to 12.9%) and accuracy (deviation from −6.3 to 9.7%). Moreover, sample treatment processes including human immunodeficiency virus (HIV) heat-inactivation, exposure at room temperature and freezing-thawing cycles did not influence the stability of the analyte. This assay was successfully applied to the determination of 3TC serum levels in HIV-infected patients. In addition, preliminary results indicated that this procedure may also be extended to the measurement of 3TC in human plasma and urine.  相似文献   

19.
A liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI-MS/MS) method for the determination of andrographolide in human plasma was established. Dehydroandrographolide was used as the internal standard (I.S.). The plasma samples were deproteinized with methanol and separated on a Hanbon C18 column with a mobile phase of methanol–water (70:30, v/v). HPLC–ESI-MS/MS was performed in the selected ion monitoring (SIM) mode using target ions at [M?H2O–H]?, m/z 331.1 for andrographolide and [M?H]?, m/z 331.1 for the I.S. Calibration curve was linear over the range of 1.0–150.0 ng/mL. The chromatographic separation was achieved in less than 6.5 min. The lower limits of quantification (LLOQ) was 1.0 ng/mL. The intra and inter-run precisions were less than 6.95 and 7.22%, respectively. The method was successfully applied to determine the plasma concentrations of andrographolide in Chinese volunteers.  相似文献   

20.
A simple HPLC method has been developed for the determination of ticlopidine in human plasma. Plasma samples were buffered at pH 9 and extracted with n-heptane-isoamyl alcohol (98.5: 1.5, v/v). Imipramine was used as internal standard. Chromatography was performed isocratically with acetonitrile-methanol-0.05 M KH2PO4 (20:25:55, v/v) at pH 3.0 containing 3% triethylamine at a flow-rate of 1 ml/min. A reversed-phase column, Supelcosil LC-8-DB, 15 cm × 4.6 mm I.D., 5 μm particle size, was used. The effluent was monitored by UV absorbance detection at 235 nm. The method showed good accuracy, precision and linearity in the concentration range 5–1200 ng/ml. The limit of quantitation was 5 ng/ml, with a precision (C.V.) of 8.91%, which is the same as that achieved by other authors with a previously published GC-MS method. The procedure described in this paper is simple and allows the routine assessment of ticlopidine plasma concentration in pharmacokinetic studies following therapeutic doses in human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号