首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatography procedure for detection and quantitation of ethylene glycol in serum is described. Ethylene glycol and internal standard are derivatized with benzoyl chloride under alkaline conditions, purified by solid-phase extraction and analyzed by HPLC with UV detection. Analytical recovery of ethylene glycol ranges between 96 and 103%. The calibration curve is linear from 20 to 2000 mg/l. The limits of detection and quantitation are 10 and 20 mg/l, respectively. Assay imprecision is 4.8% or less. The assay is free from common interferences and provides increased sensitivity, improved precision and extended linearity.  相似文献   

2.
A simple, accurate and fast method was developed for determination of the commonly used HIV protease inhibitors (PIs) amprenavir, indinavir, atazanavir, ritonavir, lopinavir, nelfinavir, M8-nelfinavir metabolite and saquinavir in human plasma. Liquid-liquid extraction was used with hexane/ethylacetate from buffered plasma samples with a borate buffer pH 9.0. Isocratic chromatographic separation of all components was performed on an Allsphere hexyl HPLC column with combined UV and fluorescence detection. Calibration curves were constructed in the range of 0.025-10 mg/l. Accuracy and precision of the standards were all below 15% and the lowest limit of quantitation was 0.025 mg/l. Stability of quality control samples at different temperature conditions was found to be below 20% of nominal values. The advantages of this method are: (1) inclusion and determination of the newly approved atazanavir, (2) simultaneous isocratic HPLC separation of all compounds and (3) increased specificity and sensitivity for amprenavir by using fluorescence detection. This method can be used for therapeutic drug monitoring of all PIs currently commercialised and is now part of current clinical practice.  相似文献   

3.
This paper describes a set of simple and sensitive multiresidue methods for the determination of the specific serotonin reuptake inhibitors (SSRIs) used as antidepressant drugs, and some of their respective active metabolites in human serum. It involves liquid–liquid extraction procedures followed by gas chromatography coupled to nitrogen phosphorus detection or isocratic reversed-phase high-performance liquid chromatography combined with fluorescence detection (HPLC–FL), depending on the analytes. Extraction recoveries were between 71 and 96% for the eight SSRIs and their metabolites analysed by GC and between 41 and 77% for the two of them analysed by HPLC. Limits of detection (LODs) and limits of quantitation (LOQs) ranged, respectively, from 2.5 to 5 μg/l and from 10 to 20 μg/l. Intra-assay and inter-assay precision was studied at three and four concentration levels, respectively, and was less than 19% for all compounds. Accuracy was also satisfactory for all. An excellent linearity was observed from the LOQs up to 1000 μg/l for milnacipram and paroxetine and from each LOQ up to 400 mg/l for the other compounds. The performance of the methods described thus allows the therapeutic drug monitoring of the currently commercialised SSRIs.  相似文献   

4.
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.  相似文献   

5.
The development of an immunoaffinity-based extraction method for the determination of morphine and its glucuronides in human blood is described. For the preparation of an immunoadsorber, specific antisera (polyclonal, host: rabbit) against morphine, morphine-3-glucuronide and morphine-6-glucuronide were coupled to 1,1′-carbonyldiimidazole-activated trisacrylgel and used for immunoaffinity extraction of morphine and its glucuronides from coronary blood. The resulting extracts were analysed by HPLC with native fluorescence detection. The mean recoveries from spiked blood samples were 71%, 76% and 88% for morphine, morphine-3-glucuronide and morphine-6-glucuronide, respectively. The limit of detection was 3 ng/g blood and the limit of quantitation was 10 ng/g blood for all three analytes. The results of the analysis of coronary blood samples from 23 fatalities due to heroin are presented.  相似文献   

6.
Type-2 diabetes is a disorder characterized by disrupted insulin production leading to high blood glucose levels. To control this disease, combination therapy is often used. Hypoglycemic agents such as metformin, glipizide, glyburide, repaglinide, rosiglitazone, nateglinide, and pioglitazone are widely prescribed to control blood sugar levels. These drugs provide the basis for the development of a quantitative multianalyte bioanalytical method. As an example, a highly sensitive and selective multi-drug method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. This rapid, automated method consists of protein precipitation of 20 microL of plasma coupled with gradient HPLC elution of compounds using 10 mM ammonium formate buffer and 0.1% formic acid in acetonitrile as the mobile phases. MS/MS detection was performed using turbo ion spray in the positive ion multiple reaction monitoring (SRM) mode. A lower limit of quantitation (LLQ) in a range of 1.0-5.0 ng/mL was achieved for all analytes. The linearity of the method was observed over a 500-fold dynamic range. Drug recoveries ranged from 86.2 to 94.2% for all analytes of interest. Selectivity, sample dilution, intra-day and inter-day accuracy and precision, and stability assessment were evaluated for all compounds.  相似文献   

7.
In this study, a high-performance liquid chromatographic method with pre-column derivatization and fluorescence detection was optimised and validated for the quantification of azithromycin (AZM) in plasma. Clarithromycin (CLM) was used as an internal standard. Pre-column derivatization was done with 9-fluorenylmethyloxycarbonyl-chloride. Recovery from blood and polymorphonuclear neutrophils (PMNNs) isolated by a gravity separation procedure was also assessed. Analytical separation was carried out using a C18 column as stationary phase and acetonitril-phosphatebuffer as mobile phase. Peak quantification was carried out by excitation at 26 7 nm and detection at 317 nm. A lower limit of quantitation of 0.042+/-0.017 mg/l in plasma, 0.119+/-0.065 mg/l in blood and 0.072+/-0.036 in water was achieved. Linearity was assessed from 0 to 1.5mg/l in plasma and blood and from 0-9 mg/l in water. The analytical method proved to be applicable in a pharmacokinetic study of AZM in a Cystic Fibrosis patient.  相似文献   

8.
A high-performance liquid chromatographic (HPLC) assay for the determination of nicotine and cotinine in human milk was developed using an extraction by liquid-liquid partition combined with back extraction into acid, and followed by reverse-phase chromatography with UV detection of analytes. The assay was linear up to 500 microg/l for both nicotine and cotinine. Intra- and inter-day relative standard deviations (R.S.D.) were <10% (25-500 microg/l) for both nicotine and cotinine. Limits of quantitation (LOQ) were 10 and 12 microg/l for nicotine and cotinine, respectively, while the limits of detection (LOD) were 8 and 10 microg/l for nicotine and cotinine, respectively. The mean recoveries were 79-93% (range 25-500 microg/l) for nicotine and 78-89% (range 25-500 microg/l) for cotinine. The amount of fat in the milk did not affect the recovery. We found that this method was sensitive and reliable in measuring nicotine and cotinine concentrations in milk from a nursing mother who participated in a trial of the nicotine patch for smoking cessation.  相似文献   

9.
A rapid, simple and robust method is presented for the simultaneous determination of the gamma-amino-n-butyric acid (GABA) derivatives pregabalin (PGB), gabapentin (GBP) and vigabatrin (VGB) in human serum by high-performance liquid chromatography (HPLC). Serum is deproteinized with trichloroacetic acid and aliquots of the supernatant are precolumn derivatized with o-phtaldialdehyde (OPA) and 3-mercaptopropionic acid. Separation is achieved on a Alltima 3C18 column using isocratic elution; the drugs are monitored using fluorescence detection. Norvaline is used as an internal standard. Within-day precision (COV; n = 10) is 1.2% for PGB (serum concentration 10.0 mg/l), 1.1% for GBP (serum concentration 15.8 mg/l) and 0.3% for VGB (serum concentration 15.5 mg/l). The method is linear up to at least 63 mg/l for PGB, 40 mg/l for GBP and 62 mg/l for VGB. Lower limits of quantitation (LOQ) are 0.13 mg/l for PGB, 0.53 mg/l for GBP and 0.06 mg/l for VGB. No interferences were found from commonly coadministered antiepileptic drugs (AEDs) and from endogenous amino acids. Experimental design in combination with statistical evaluation (ANOVA) was used to study the robustness of chromatography and sample preparation. The method is very suitable for routine therapeutic drug monitoring and for pharmacokinetic studies.  相似文献   

10.
A rapid, robust and sensitive method for the extraction and quantitative analysis of serum fluoxetine (FLX) and norfluoxetine (N-FLX) using a solid-phase extraction (SPE) column and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed and validated. The sample clean-up step was performed by simple micro-disc mixed-mode (non-polar and strong cation exchange (SCX)) SPE cartridges. Separation of analytes and internal standard (IS) clomipramine (CLO) from endogenous matrix interference was achieved using a Waters Symmetry C(8) (150 mm x 2.1 mm i.d., 5 microm) reversed-phase narrow bore column. The relative retention times were 8.5, 9.6 and 10.5 min for FLX, N-FLX and CLO, respectively with a low isocratic flow rate of 0.3 ml/min. Chromatographic run time was completed in 15 min and peak area ratios of analytes to IS were used for regression analysis of the calibration curve. The latter was linear from 10 to 4000 nmol/l using 0.5 ml sample volume of serum. The average recovery was 95.5% for FLX and 96.9% for N-FLX. The lowest limit of quantitation (LLOQ) for serum FLX and N-FLX was 10 nmol/l (on-column amount of 200 fmol). The method described was used to analyse serum samples obtained from rats given chronic FLX treatment and to examine the relationship between steady state serum drug concentrations and neurochemical changes in several brain regions.  相似文献   

11.
A reversed-phase high-performance liquid chromatography (HPLC) method was developed to determine 6-mercaptopurine (MP) and seven of its metabolites (6-thioguanine, 6-thioxanthine, 6-mercaptopurine riboside, 6-thioguanosine, 6-thioxanthine riboside, 6-methylmercaptopurine and 6-methylmercaptopurine riboside) simultaneously in human plasma. A volume of 100 μl of plasma was used. Protein was removed from the sample by a simple and easy ultrafiltration step and ultrafiltrate was directly injected onto the HPLC system. Analytes were detected and confirmed with a diode-array detector before quantitation at 295 and 330 nm. The limit of detection for the analytes ranged from 20 to 50 nM. For the majority of patients receiving a 1 g/m2 MP intravenous infusion, MP and all metabolites except 6-thioguanine and 6-methylmercaptopurine riboside were present. This method serves as useful tool to characterize pharmacokinetics and pharmacodynamics of MP in oncology patients, and the small volume of plasma lends itself to pediatric studies.  相似文献   

12.
A simple and highly sensitive normal-phase HPLC method is described for determining sertindole concentrations in human plasma using fluorimetric detection. A short C8 column was used to extract sertindole and the internal standard from plasma; the column was rinsed with acetonitrile, and the analytes were recovered by elution with methanol. This uncommon selectivity between the two solvents allowed clean extraction and near- quantitative recovery of the analytes (> 89%). Separation was done on a 5-μm silica-gel column and detection was performed by fluorimetry, with emission at 340 nm and excitation at 260 nm. The detection and lower quantifiable limits were 0.01 and 0.025 ng/ml, respectively, with no interference from plasma or potential metabolites.  相似文献   

13.
An analytical method has been developed and validated for the quantitation of CP-88,059 in human serum. The compound and internal standard were extracted from serum by solid-phase extraction with a weak cation-exchange phase. The analytes were resolved from endogenous interferences using narrow-bore (2.1 mm I.D.) C18 reversed-phase HPLC. Column effluent was monitored by UV absorbance detection at 215 nm. The standard curve range was 1 to 250 ng/ml. The accuracy and precision values for the method were within ±10% and ±15%, respectively. A four-fold detectability enhancement was achieved using a 2.1 mm I.D. HPLC column relative to the more common 4.6 mm I.D. column. A performance comparison was made between the 2.1 mm I.D. column used for validation and a 4.6 mm I.D. column with the same stationary phase.  相似文献   

14.
A simple and sensitive high-performance liquid chromatographic (HPLC) method is established for the trace determination of tobramycin in human plasma by derivatization. The method is based on the chemical derivatization of aminoglycoside antibiotic, tobramycin in human plasma, with 1-naphthyl isothiocyanate (NITC) in pyridine at 70 degrees C. After derivatization reaction, a methylamine/acetonitrile solution was added to the reaction mixture to eliminate the excess derivatizing agent and shorten the analysis time. The resulting derivative was separated using a Purospher STAR RP-18e column and a water-acetonitrile (50:50, v/v) mobile phase (detection at 230 nm). Optimization conditions for the derivatization of tobramycin were investigated by HPLC. The linear range for the quantitation of tobramycin in spiked plasma was over 0.93-9.34 mg/l; the detection limit (signal-to-noise ratio=3; injection volume, 10 microl) was about 0.23 mg/l. The relative standard deviation was less than 2.1% for intra-day assay (n=6) and 5.2% for inter-day assay (n=6) and relative recoveries were found greater than 99%.  相似文献   

15.
A screening procedure was developed for the identification and the quantification of eight quaternary nitrogen muscle relaxants, including d-tubocurarine, alcuronium, pancuronium, vecuronium, atracurium, mivacurium, rocuronium and mebezonium, in blood samples. The procedure involves ion-pair extraction with methylene chloride at pH 5.4, reversed-phase HPLC separation and electrospray ionization mass spectrometry detection. The procedure was validated in terms of linearity (0.9295 for all the target compounds at 0.1 mg/l). The screening test was found satisfactory and applied in two fatal deaths. In the first case, toxicological investigations on biological fluids collected during the autopsy revealed the presence of vecuronium (1.2 and 0.6 mg/l in blood and urine, respectively) and its desacetylated metabolite, 3-hydroxy-vecuronium (4.4 and 0.7 mg vecuronium equivalent/l in blood and urine, respectively). In the second forensic case, blood analysis showed high levels of mebezonium (6.5 mg/l). The developed procedure was found suitable for forensic investigations.  相似文献   

16.
An improved, more efficient method for the determination of metoprolol and its two metabolites in human urine is reported. The simultaneous analysis of the zwitterionic metoprolol acidic metabolite (III, H117/04) with the basic metabolites α-hydroxymetoprolol (II, H119/66), metoprolol (I) and guanoxan (IV, internal standard) was achieved employing solid-phase extraction and isocratic reversed-phase HPLC. The analytes were extracted from urine (100 μl) using C18 solid-phase extraction cartridges (100 mg), and eluted with aqueous acetic acid (0.1%, v/v)–methanol mixture (40:60, v/v, 1.2 ml). The eluents were concentrated (250 μl) under vacuum, and aliquots (100 μl) were analysed by HPLC with fluorescence detection at 229 nm (excitation) and 309 nm (emission) using simple isocratic reversed-phase HPLC (Novapak C18 radial compression cartridge, 4 μm, 100×5 mm I.D.). Acetonitrile–methanol–TEA/phosphate buffer pH 3.0 (9:1:90, v/v) was employed as the eluent (1.4 ml/min). All components were fully resolved within 18 min, and the calibration curves for the individual analytes were linear (r2≥0.996) within the concentration range of 0.25–40.0 mg/ml. Recoveries for all four analytes were greater than 76% (n=4). The assay method was validated with intra-day and inter-day variations less than 2.5%.  相似文献   

17.
Introduction – Biflavones of Hypericum perforatum L. are bioactive compounds used in the treatment of inflammation and depression. Determination of amentoflavone and biapigenin from blood is challenging owing to their similar structures and low concentrations. Objective – To develop a rapid, sensitive and accurate method based on liquid‐phase extraction followed by high‐performance liquid chromatography and electrospray ionisation mass spectrometry (HPLC‐ESI‐MS) for quantification of biflavones in human plasma. Methodology – After extraction from blood, the analytes were subjected to HPLC with an XTerra® MS C18 column and a binary mobile phase consisting of 2% formic acid in water and acetonitrile under isocratic elution conditions, with ESI‐MS detection in the negative ion mode and multiple reaction monitoring (MRM). Results – Both calibration curves showed good linearity within the concentration range 1–500 ng/mL. Limits of detection (S/N = 3) were 0.1 ng for pure substances and the limits of quantitation (S/N = 5) were 1.0 ng/mL from analyte‐spiked serum. The grand mean recovery was 90% from several subsamples of each biflavone. The imprecision (RSD) of peak areas was between 5% (intraday) and 10% (interday) for high concentrations (250 ng/mL) and between 10% (intraday) and 15% (interday) for low concentrations (1 ng/mL). Inaccuracy of the mean was less than 20% at the lower limit of quantitation. Conclusion – The developed and validated method for determination of biflavones from human plasma was effectively applied to pharmacokinetic studies of 13 probands and preliminary results indicate biphasic concentration–time curves. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A multiplexing bead-based platform provides an approach for the development of assays targeting specific analytes for biomonitoring and biosensing applications. Multi-Analyte Profiling (xMAP) assays typically employ a sandwich-type format using antibodies for the capture and detection of analytes of interest, and the system permits the simultaneous quantitation of multiple targets. In this study, an aptamer/antibody assay for the detection of C-reactive protein (CRP) was developed. CRP is an acute phase marker of inflammation whose elevated basal levels are correlated with an increased risk for a number of pathologies. For this assay, an RNA aptamer that binds CRP was conjugated to beads to act as the capture agent. Biotinylated anti-CRP antibody coupled to fluorescently labeled streptavidin was used for quantification of CRP. The detection limit of the CRP assay was 0.4 mg/L in diluted serum. The assay was then used to detect spiked CRP samples in the range of 0.4 to 10 mg/L in diluted serum with acceptable recoveries (extrapolated values of 70–130%), including that of a certified reference material (129% recovery). The successful incorporation of the CRP aptamer into this platform demonstrates that the exploration of other aptamer–target systems could increase the number of analytes measurable using xMAP-type assays.  相似文献   

19.
A HPLC method is described for the simultaneous determination of d-fenfluramine (FEN), d-norfenfluramine (NF) and fluoxetine (FLX) using fluorometric detection after precolumn derivatization with dansyl-chloride. The method has limits of quantitation of 200 fmol for FEN and NF, 500 fmol for FLX in brain microdialysate, and 1 pmol for NF and FEN, and 2 pmol for FLX in plasma. Brain tissue standards were linear between 5 and 200 pmol/mg for all three compounds. The inter-assay variability (relative standard deviation) was 6.6%, 6.9% and 9.3% for FEN, 4.6%, 3.7% and 7.9% for NF and 10.4%, 4.9% and 12.2% for FLX, for brain microdialysate (2 pmol/μl), plasma (2 pmol/ μl) and brain tissue (50 pmol/mg), respectively. Intra-assay variability was always lower, typically several times lower than inter-assay variability. Extraction recovery was 108% and 48% for FEN, 105% and 78% for NF and 94% and 45% for FLX, in plasma (2 pmol/μl) and brain tissue (5 pmol/mg), respectively. Due to the stability of the dansyl-chloride derivatives this method is well suited for an autoinjector after manual derivatization with dansyl chloride at room temperature for 4 h.  相似文献   

20.
A HPLC method is described for the simultaneous determination of d-fenfluramine (FEN), d-norfenfluramine (NF) and fluoxetine (FLX) using fluorometric detection after precolumn derivatization with dansyl-chloride. The method has limits of quantitation of 200 fmol for FEN and NF, 500 fmol for FLX in brain microdialysate, and 1 pmol for NF and FEN, and 2 pmol for FLX in plasma. Brain tissue standards were linear between 5 and 200 pmol/mg for all three compounds. The inter-assay variability (relative standard deviation) was 6.6%, 6.9% and 9.3% for FEN, 4.6%, 3.7% and 7.9% for NF and 10.4%, 4.9% and 12.2% for FLX, for brain microdialysate (2 pmol/μl), plasma (2 pmol/ μl) and brain tissue (50 pmol/mg), respectively. Intra-assay variability was always lower, typically several times lower than inter-assay variability. Extraction recovery was 108% and 48% for FEN, 105% and 78% for NF and 94% and 45% for FLX, in plasma (2 pmol/μl) and brain tissue (5 pmol/mg), respectively. Due to the stability of the dansyl-chloride derivatives this method is well suited for an autoinjector after manual derivatization with dansyl chloride at room temperature for 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号