首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported a HPLC assay method using fluorimetric detection for the simultaneous determination of urinary N2-(3-aminopropyl)biopterin (oncopterin, a natural pteridine newly found in urine from cancer patients), biopterin and neopterin. We now have observed that an unknown substance, which may be derived from methotrexate, in urine from a patient with stomach cancer interfered with the assay of oncopterin and demonstrated that oncopterin could be completely separated from the unidentified substance by HPLC using a Nucleosil 100-5SA strong cation-exchange column. Furthermore, oncopterin was not detectable by this HPLC-fluorimetric method in urine samples from patients with stomach cancer who were not treated with methotrexate. The content of urinary oncopterin from cancer patients is supposed to be very low, with less than 1 μmollmol creatinine. The present results indicate that the peak found with elution from the C18 column was a methotrexate-derived compound and co-eluted with the analyte oncopterin.  相似文献   

2.
Specific antibodies against l-erythro-biopterin have been prepared in rabbits using the conjugates to bovine serum albumin. The antiserum against l-erythro-biopterin distinguished among l-erythro-tetrahydro- or 7,8-dihydro-biopterin, the other three stereoisomers of biopterin, d-erythro-neopterin, folic acid, and other synthetic pteridines. Using the specific antiserum against l-erythro-biopterin, a radioimmunoassay has been developed to measure the biopterin concentrations in urine, serum, cerebrospinal fluid, and tissues. The conjugate of l-erythro-biopterin with tyramine, 4-hydroxy-2-[2-(4-hydroxyphenyl)ethylamino]-6-(l-erythro-1,2-dihydroxypropyl)pteridine (BP-TYRA), was synthesized and labeled with 125I as the labeled ligand for the radioimmunoassay. BP-125I-TYRA had similar binding affinity as the natural l-erythro-biopterin and was thus permitted to establish a highly sensitive radioimmunoassay for biopterin. The limit of sensitivity of the radioimmunoassay with BP-125I-TYRA as labeled ligand was 0.5 pmol. The total concentration of biopterins, i.e., biopterin, 7,8-dihydro-, quinonoid dihydro and tetrahydrobiopterins, in the biological samples was obtained by iodine oxidation under acidic conditions prior to the radioimmunoassay, whereas iodine oxidation under alkaline conditions gave the concentration only of the former two. Biopterin in urine could be measured directly using 1 μl of urine, but a pretreatment with a small Dowex 50-H+ column was required for serum, cerebrospinal fluid, and brain tissues.  相似文献   

3.
Biopterin, 6-hydroxymethyl-pterin, isoxanthopterin, neopterin and, pterin were quantified in stress-free collected spontaneous morning urine samples from Callithrix jacchus, Saguinus fuscicollis, Saguinus labiatus, Saimiri sciureus, Presbytis entellus, Cercopithecus albogularis, Cercocebus torquatus, Macaca fascicularis, Hylobates concolor, Pongo pygmaeus, and Gorilla gorilla. In most species, biopterin was the most frequent urinary pteridine followed by neopterin. Sex differences in biopterin and neopterin excretion were observed in Gorilla gorilla and Pongo pygmaeus. Pterin and isoxanthopterin were only present in minor concentrations. 6-hydroxymethyl-pterin was barely detectable and not present in the urine of Saguinus labiatus, Saimiri sciureus, and both male Gorilla gorilla and Pongo pygmaeus.  相似文献   

4.
Levels of GTP cyclohydrolase, neopterin and biopterin were determined in tissues and body fluids of humans, monkey, dog and mouse. Highest levels of GTP cyclohydrolase and biopterin were found in pineal, liver, spleen, bone marrow, whole adrenal gland and small intestine. High levels of biopterin were found in the urine of all species examined. High levels of neopterin were found only in the urine of humans and monkeys, very low levels could be detected in dog, while none could be detected in mouse, rat, guinea pig or hamster urine.  相似文献   

5.
The concentrations of neopterin and biopterin in CSF of 18 younger and 10 older, control patients and of 18 patients with Parkinson's disease were measured by high-performance liquid chromatography with fluorescence detection. Both neopterin concentrations and the neopterin to biopterin ratios in CSF were lower in 50-year or younger group than in 51-year or older group. Biopterin concentrations were also decreased but not significantly in the older group. The concentrations of neopterin and biopterin in CSF of patients with Parkinson's disease were lower than those of the age-matched older control group. However, the neopterin/biopterin ratios tended to be lower but not change significantly as compared to the age-matched older control group.  相似文献   

6.
The 2.2-A crystal structure of chicken liver dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a ternary complex with NADP+ and biopterin (a poor substrate). The space group and unit cell are isomorphous with the previously reported structure of chicken liver DHFR complexed with NADPH and phenyltriazine [Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., & Kraut, J. (1982) J. Biol. Chem. 257, 2528-2536]. The structure contains an ordered water molecule hydrogen-bonded to both hydroxyls of the biopterin dihydroxypropyl group as well as to O4 and N5 of the biopterin pteridine ring. This water molecule, not observed in previously determined DHFR structures, is positioned to complete a proposed route for proton transfer from the side-chain carboxylate of E30 to N5 of the pteridine ring. Protonation of N5 is believed to occur during the reduction of dihydropteridine substrates. The positions of the NADP+ nicotinamide and biopterin pteridine rings are quite similar to the nicotinamide and pteridine ring positions in the Escherichia coli DHFR.NADP+.folate complex [Bystroff, C., Oatley, S. J., & Kraut, J. (1990) Biochemistry 29, 3263-3277], suggesting that the reduction of biopterin and the reduction of folate occur via similar mechanisms, that the binding geometry of the nicotinamide and pteridine rings is conserved between DHFR species, and that the p-aminobenzoylglutamate moiety of folate is not required for correct positioning of the pteridine ring in ground-state ternary complexes. Instead, binding of the p-aminobenzoylglutamate moiety of folate may induce the side chain of residue 31 (tyrosine or phenylalanine) in vertebrate DHFRs to adopt a conformation in which the opening to the pteridine binding site is too narrow to allow the substrate to diffuse away rapidly. A reverse conformational change of residue 31 is proposed to be required for tetrahydrofolate release.  相似文献   

7.
Radioimmunoassay for neopterin in body fluids and tissues   总被引:1,自引:0,他引:1  
Specific antibodies against D-erythroneopterin have been prepared in rabbits using a conjugate of D-erythroneopterin to bovine serum albumin (D-erythroneopterinylcaproyl-bovine serum albumin). The antiserum distinguished D-erythroneopterin from other pteridines, i.e., three stereoisomers of neopterin, L-erythrobiopterin, folic acid, xanthopterin, and four other synthetic pteridines. Using this specific antiserum, a radioimmunoassay for D-erythroneopterin has been developed to measure the neopterin concentrations in urine and tissues. The conjugate of D-erythroneopterin with tyramine (NP-Tyra) was synthesized and labeled with 125I as the labeled ligand NP-[125I]tyra for the radioimmunoassay. The minimal detectable amount of neopterin was about 0.1 pmol. The concentration of total neopterin (neopterin, 7,8-dihydroneopterin, quinonoid dihydroneopterin, and tetrahydroneopterin) in the biological samples was obtained by iodine oxidation under acidic conditions prior to the radioimmunoassay, and that of neopterin plus 7,8-dihydroneopterin by oxidation under alkaline conditions. Total neopterin values in human urine obtained by this new radioimmunoassay showed a good agreement with those obtained by high-performance liquid chromatography with fluorescence detection. With rat tissue samples which contained very low concentrations of neopterin as compared to biopterin, biopterin was simultaneously determined by our previously reported radioimmunoassay, and neopterin values were corrected for the cross-reactivity (0.1%). The neopterin concentrations obtained by this method agreed with the values obtained by the radioimmunoassays for neopterin and biopterin after their separation by high-performance liquid chromatography. This very small amount of neopterin, as compared with biopterin, in rat tissues could not be determined by high-performance liquid chromatography-fluorometry alone due to the masking of the neopterin peak by a large biopterin peak.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In in vivo experiments, radioactivity from [U-14C]GTP was incorporated into biopterin, and, in fact, all carbon atoms of biopterin synthesized in Ascaris lu lumbricoides suum originated from GTP.Biopterin was also biosynthesized in homogenates of tissue fluid and muscles of Ascaris lumbricoides suum.The enzyme which catalyzes sepiapterin synthesis from D-erythto-7,8-dihydroneopterin-3′-phosphate was found in A. lumbricoides suum extracts and extracted in the 0–30% (NH4)2SO4 fraction from a 40 000 × g supernatant. The enzyme was purified by Sephadex G-200 column and DEAE-cellulose column chromatography. It is suggested that sepiapterin could be an intermediate compound in biopterin biosynthesis.  相似文献   

9.
Conditions for the quantitative oxidation and destruction of tetrahydrobiopterin and quinoid dihydrobiopterin and the separation of biopterin from its reduced forms by ECTEOLA-Sephadex column chromatography are described. A procedure for the quantitation of tetrahydrobiopterin plus quinoid dihydrobiopterin, 7,8-dihydrobiopterin, and biopterin using a Crithidia bioassay is presented. Using these procedures it was found that tetrahydrobiopterin plus quinoid dihydrobiopterin are the prevalent forms in liver and blood of mice and that biopterin was the predominant form in the tails of tadpoles. In human urine, approximately half of the biopterin was found as tetrahydrobiopterin plus quinoid dihydrobiopterin and the other half was 7,8-dihydrobiopterin. The presence of tetrahydrobiopterin and quinoid dihydrobiopterin was confirmed by a coenzyme assay for the hydroxylation of phenylalanine.  相似文献   

10.
The pattern of unconjugated pterins in liver tissue and in urine from patients with atypical forms of phenylketonuria with hyperphenylalaninemia (HPA) has been investigated with a high performance liquid chromatographic technique. Two patients with defects in the biosynthesis of biopterin have been shown to have higher than normal levels of neopterin and lower than normal levels of biopterin. In contrast, a patient with HPA due to a deficiency of dihydropteridine reductase has the reverse urinary pattern, i.e., high biopterin, low neopterin. These results indicate that the ratio of neopterin to biopterin in urine can be of value in discriminating between HPA due to a deficiency of phenylalanine hydroxylase (classic PKU), HPA due to dihydropteridine reductase deficiency, and HPA due to a block in the biosynthesis of biopterin.  相似文献   

11.
Engin AB  Ergun MA  Yurtcu E  Kan D  Sahin G 《Mutation research》2005,585(1-2):184-192
Investigations carried out to estimate the effect of long-term occupational exposure to low levels of external ionizing radiation indicated that exposed hospital staff showed an increase in chromosome aberrations. The purpose of this study was to evaluate whether genomic instability or an alteration in pteridine synthesis could be used as a marker of the potential hazard of ionizing radiation in hospital workers. Twenty gamma-radiation- and 33 X-ray-exposed technicians working in radiotherapy and radio-diagnostic units were included in this study, along with 22 healthy matched individuals. Plasma concentrations of nitrite plus nitrate (NO(x)) were measured to estimate reactive nitrogen species. Urinary neopterin, biopterin and creatinine concentrations were measured by high-performance liquid chromatography to determine metabolic activity along the pteridine pathway. Sister chromatid exchange was used as a measure of mutagenicity. Apoptosis was evaluated morphologically and also with a DNA-fragmentation test. The plasma NO(x) levels of both gamma-radiation- and X-ray-exposed technicians were significantly higher than those of the healthy controls (p<0.05). While the urinary biopterin concentrations were significantly higher in radiation-exposed groups compared with the healthy subjects (p<0.05), urinary neopterin concentrations remained unchanged. The apoptosis rates of gamma-radiation- and X-ray-exposed workers were significantly elevated in comparison with those in the control group (both p<0.05). Also, the increase in sister chromatid exchange frequency was significant in each of the radiation-exposed groups (exposed groups versus controls; p<0.05). These results indicate that long-term exposure to low-dose ionizing radiation, even below the permitted levels, could result in increased oxidative stress, which may lead to DNA damage and mutagenicity.  相似文献   

12.
Biopterin and neopterin in human saliva   总被引:1,自引:0,他引:1  
S Katoh  T Sueoka  S Matsuura  T Sugimoto 《Life sciences》1989,45(26):2561-2568
Presence of biopterin and neopterin in human saliva was investigated by HPLC after iodine oxidation in acidic medium. Concentrations of biopterin and neopterin (M +/- SEM) were 1.271 +/- 0.254 and 0.358 +/- 0.075 ng per ml, respectively, in saliva of apparently healthy young male adults, ages 20 to 22 years (n = 9). Nearly identical value of the neopterin/biopterin ratio (0.29 +/- 0.07) was obtained for each of these specimens. Monapterin, the L-threo-isomer of neopterin (0.084 +/- 0.022 ng per ml saliva), and other unconjugated pterins such as xanthopterin, 6-hydroxymethylpterin and pterin were also found in the saliva. These pterins were all detectable in saliva of young female adults with similar levels to those of male saliva. Another fluorescent compound which was identical with 7-iso biopterin in retention time on HPLC was observed in all specimens of normal saliva examined.  相似文献   

13.
Occupational and environmental aluminum (Al) exposure cause serious health problems by interaction with biological systems. Al is one of the most documented metals because its cellular targets are unclear biochemical processes and membranes of organisms. The major aim of the present study was to investigate the alteration of serum and urine aluminum in occupational exposure and to observe whether the metal exposure could cause any changes in pteridine-pathway-related critical compounds such as urinary neopterin and biopterin and blood dihydropteridine reductase (DHPR). In this study, determination of the metal concentrations was carried out in Al-exposed workers (n=23) and healthy volunteers (n=18) by using a tomic absorption spectrometer. DHPR enzyme activity and levels of neopterin and biopterin were detected by spectrophotometric and high-performance liquid chromatographic methods, respectively. It was found that occupational exposure to the metal led to a statistically significant increase in serum Al levels compared to the controls (p<0.05). At the same time, urinary neopterin and biopterin concentrations of the exposed group were higher than nonexposed subjects (both p<0.05). The correlations among Al levels and DHPR activity, magnesium concentration in serum and urine, working years, smoking status, and age were evaluated.  相似文献   

14.

Introduction

Urinary pteridines are putative molecular biomarkers for noninvasive cancer screening and prognostication. Central to their translational biomarker development is the need to understand the sources and extent of their non-epidemiological variation.

Objectives

This study was designed to characterize the two primary sources of urinary pteridine variance: daily variation and the effect of dietary folate.

Methods

Daily variation was studied by collecting urine specimens (n = 81) three times daily for 3 days. The effect of dietary folate was investigated in a treatment study in which urine specimens (n = 168) were collected daily during a control week and a treatment week during which participants received dietary folate supplements. Measurements of six urinary pteridines were made using high-performance liquid chromatography–tandem mass spectrometry. Coefficients of variation were calculated to characterize daily variance between and within subjects, while nearest neighbor non-parametric analyses were used to identify diurnal patterns and measure dietary folate effects.

Results

Daily variance was approximately 35 % RSD for both within-day and between-day periods for most pteridines. Diurnal patterns in response to circadian rhythms were similarly observed for urinary pteridines. Folate supplementation was shown to alter urinary pteridine profiles in a pathway dependent manner, suggesting that dietary folate may regulate endogenous neopterin and biopterin biosynthesis.

Conclusions

Urinary pteridine levels were found to be responsive to both daily variation and folate supplementation. These findings provide new insights into pteridine biosynthesis and regulation as well as useful information for the design of future clinical translational research.
  相似文献   

15.
Using an established high-performance liquid chromatography (HPLC) method based on anion exchange chromatography, fraction collection, and electrochemical detection, the oxidative DNA damage marker 8-hydroxy-2′-deoxyguanosine (8-OH-dG) can be analyzed rapidly and precisely in human urine samples. In addition, by ultraviolet (UV) detection, it was shown recently that it is possible to simultaneously analyze creatinine and 7-methylguanine (m7Gua), an RNA degradation product, in urine. By adding a fluorescence detector to the HPLC system, we now report that it is also possible to detect pteridins such as neopterin and biopterin. The fluorescence detection was evaluated in detail for neopterin, an immune response and tumor marker. The urinary content of neopterin, assessed by using the HPLC method, was verified with a commercial neopterin enzyme-linked immunosorbent assay (ELISA) kit as indicated by the high correlation between the two methods (r = 0.98). In urinary samples from 58 young healthy individuals (male and female nonsmokers, ages 19-39 years), it was found that there was no significant correlation (r = −0.04) between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). In contrast, in urinary samples from 60 old healthy individuals (male and female nonsmokers, ages 60-86 years), there was a significant correlation (r = 0.47) found between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). These findings strongly indicate that the higher level of immune response that was correlating with old age contributes significantly to the higher level of oxidative damage as assessed in the form of 8-OH-dG. Using this type of HPLC system, it is possible to evaluate oxidative DNA damage and immune response simultaneously using the respective urinary markers. These data may contribute to understanding of the pathophysiology of diseases such as infections and tumor progression where both oxidative stress and immune response occur simultaneously.  相似文献   

16.
A high-performance liquid chromatographic method has been developed for the forensic analysis of eleven frequently used cyclic antidepressant drugs (ADSs) (amitriptyline, amoxapine, clomipramine, desipramine, dosulepine, doxepin, imipramine, maprotiline, melitracen, mianserine and nortriptyline) using a recently developed reversed-phase column with 2 μm particles for the analysis of biological samples. The separation was carried out using two different C8 reversed-phase columns (column 1: 100 mm × 4.6 mm I.D., particle size 2 μm, TSK gel Super-Octyl; column 2: 100 mm × 4.6 mm I.D., particle size 5 μm, Hypersil MOS-C8) for comparison. The mobile phase was composed of methanol-20 mM KH2PO4 (pH 7) (60:40, v/v) and the flow-rate was 0.6 ml/min for both columns. The absorbance of the eluent was monitored at 254 nm. When the eleven drugs were determined, the sensitivity with the 2 μm particles was about five times greater than with the 5 μm particles. Retention times on column 1 were shorter than those on column 2. These results show that the new ODS column packing with a particle size of 2 μm gives higher sensitivity and a shorter analysis time than the conventional ODS column packing when applied to the analysis of biological samples.  相似文献   

17.
We have investigated the physiological response of marine planktonic cyanobacteria to UV-A (320–390 nm) irradiation. Here, we report the isolation of a UV-A absorbing pigment from a UV-A resistant strain of Oscillatoria. This pigment has been purified, and its structure determined to be biopterin glucoside (BG), a compound chemically related to the pteridine pigments found in butterfly wings. A UV-A sensitive isolate did not produce significant levels of this chromophore. UV-A radiation was very effective in eliciting synthesis of BG. In addition, increased UV-A radiation, increased intracellular levels of BG. These data suggest that BG may protect the cyanobacterium from adverse effects of UV-A radiation. Correspondence to: T. Matsunaga  相似文献   

18.
A sensitive and selective method for the detection of pholcodine and its metabolite morphine in urine using high-performance liquid chromatography is described. It involves on-line clean-up of urine on a trace enrichment column packed with a polymeric strong cation-exchange material. Pholcodine and its metabolites were separated on two analytical columns with different selectivities. Pholcodine was detected by a fluorescence detector and morphine was detected electrochemically. One system, based on reversed-phase chromatography, applied a polystyrene—divinylbenzene column and gradient elution. The other system was based on normal-phase chromatography with a silica column and isocratic elution. Morphine was confirmed to be a metabolite of pholcodine by reversed-phase chromatography and electrochemical detection. Two unidentified metabolites of pholcodine were separated from pholcodine by normal-phase chromatography and detected by fluorescence detection.  相似文献   

19.
High performance liquid chromatography procedure for the analysis of pterins of biopterin synthesis from dihydroneopterin triphosphate via sepiapterin in rat tissues has been described. Sepiapterin-synthesizing enzyme 1, which catalyzes in the presence of Mg2+ the conversion of dihydroneopterin triphosphate to an intermediate designated compound X was assayed by determining pterin which is formed from compound X under acidic conditions. Sepiapterin- and biopterin-synthesizing activity were also assayed by determining sepiapterin and biopterin, respectively. Analytical results revealed the presence of these activities in most rat tissues examined and high levels were found in kidney, pineal gland and liver. Activities were also detectable in peripheral erythrocytes.  相似文献   

20.
Generation of nitric oxide (NO.), an autacoid with vasorelaxant and cytotoxic properties, requires at least three cytosolic components in mouse macrophages besides L-arginine and NADPH. One or more components appear after induction by immunologic stimuli; two or more are present in both activated and non-activated macrophages. The constitutive factors can be separated on a Mr approximately 30,000 cut-off filter into high Mr fraction (HF) and low Mr fraction (LF) (Stuehr, D. J., Kwon, N. S., Gross, S. S., Thiel, B. A., Levi, R., and Nathan, C. F. (1989) Biochem. Biophys. Res. Commun. 161, 420-426). Herein we characterize the major active component in LF. The active component was dialyzable (Mr less than approximately 1,000), water soluble, and cationic at acidic to neutral pH. Fractionation on a C18 column in an acetonitrile/water gradient yielded one broad peak of activity, most of which corresponded to a fluorophore with the excitation/emission spectra of biopterins. Gas chromatography isolated a species in this peak with the mass spectrum of biopterin. Of 14 pteridines tested, only 7,8-dihydrobiopterin (H2biopterin) or 5,6,7,8-tetrahydrobiopterin (H4biopterin) could replace LF in synergizing with HF and the inducible component(s) to generate NO-2 and NO-3, the accumulating oxidation products of NO.. Half-maximal activity required 20-30 nM reduced biopterins. LFs from three cell lines were active in proportion to their content of biopterins; addition of reduced biopterins restored activity to LF from biopterin-deficient cells. Enhancement of NO-2 generation in the presence of H2biopterin but not H4biopterin was abolished by methotrexate and aminopterin, inhibitors of dihydrofolate reductase. These findings implicate a redox cycle in which the generation of NO. is facilitated by catalytic amounts of H4biopterin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号