首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, simple and accurate HPLC method is presented for the determination of nadoxolol in human plasma. Nadoxolol from plasma was successfully purified using an Adsorbex column. The samples were chromatographed on a LiChrosorb RP-18 (10 μm) column with methanol—acetonitrile—phosphate buffer (pH 3.3) (70:20:10) as the mobile phase. Detection was carried out at 254 nm. The method was tested for linearity (from 5 to 25 μg/ml), recovery (85%) and precision (C.V. = 4.5%).  相似文献   

2.
A high-performance liquid chromatographic assay for O6-benzylguanine utilizing liquid-liquid extraction and reversed-phase chromatography has been developed. Plasma samples were alkalinized, extracted into ethyl acetate, evaporated, and the residues were constituted and chromatographed. Separation was accomplished by gradient elution with a mobile phase of methanol, acetonitrile, and phosphate buffer, pH 3.2. Eluted compounds were detected spectrophotometrically at 280 nm. Sample quantitation was obtained from the regression line of six-point standard curves ranging from 25 to 400 ng/ml. O6-Benzylguanine peak heights were compared to peak heights of O6-(p-chlorobenzyl)guanine (internal standard). The average regression coefficient was 0.999 (n = 4). High concentration (305 ng/ml) and low concentration (38 ng/ml) quality control samples were determined with a day-to-day relative standard deviation of 7 and 8%, respectively (n = 18). The within-day relative standard deviations were 2.7 and 3.0% (n = 18) for the high and low concentration quality control specimens, respectively. Sample quantitation was reliable to 25 ng/ml with a signal-to-noise ratio of 8:1. This method was applied to plasma samples obtained from patients in a clinical trial of O6-benzylguanine.  相似文献   

3.
4.
5.
6.
7.
A sensitive high-performance liquid chromatographic method for the determination of paromomycin in human plasma and urine was developed. Paromomycin was quantitated following pre-column derivatization with 2,4-dinitrofluorobenzene (DNFB). The chromatographic separation was carried out on a C18 column at 50°C using a mobile phase consisting of 64% methanol in water adjusted to pH 3.0 with phosphoric acid. The eluents were monitored by UV detection at 350 nm. The linearity of response for paromomycin was demonstrated at concentrations from 0.5 to 50 μg/ml in plasma and 1 to 50 μg/ml in urine. The relative standard deviation of the assay procedure is less than 5%.  相似文献   

8.
9.
An isocratic reversed-phase high-performance liquid chromatographic method for the determination of amidepin has been developed. The method is based on the extraction of alkaline plasma with diethyl ether—dichloromethane, and the injection into the Supelcosil LC-18 column of the evaporated and reconstituted organic phase. After separation, detection is carried out by a fluorescence detector (excitation at 195 nm with no filter). The limit of detection is 10 ng/ml of plasma. The mean coefficient of variation is 12%. The plasma levels after oral administration and after intravenous administration are shown.  相似文献   

10.
An improved high-performance liquid chromatographic method has been developed to measure human plasma concentrations of the analgesic nonsteroidal anti-inflammatory drug ketorolac for use in pharmacokinetic studies. Samples were prepared for analysis by solid-phase extraction using Bond-Elut PH columns, with nearly complete recovery of both ketorolac and the internal standard tolmetin. The two compounds were separated on a Radial-Pak C18 column using a mobile phase consisting of water–acetonitrile–1.0 mol/l dibutylamine phosphate (pH 2.5) (30:20:1) and detected at a UV wavelength of 313 nm. Using only 250 μl of plasma, the standard curve was linear from 0.05 to 10.0 μg/ml.  相似文献   

11.
A reversed-phase high-performance liquid chromatographic method for the determination of benflumetol in human plasma is described. Benflumetol in plasma samples was extracted with a glacial acetic acid-ethyl acetate (1:100, v/v) mixture at pH 4.0. Chromatography was performed on a Spherisorb C18 column using a methanol-water-glacial acetic acid-diethyl amine (93:6:1:0.03, v/v) mixture as the mobile phase and UV-VIS detection at 335 nm. The identity and purity of the benflumetol peak were carefully examined, and the internal standard method was applied for its quantitation. The absolute recovery of benflumetol in spiked plasma samples was 92.91% over the concentration range 5–4000 ng/ml. The recovery of internal standard “8212” at a concentration of 300 ng/ml in spiked plasma was 84.85%. The detection limit of benflumetol was 11.8 ng/ml. Plasma concentration-time profiles in healthy volunteer adults were measured after a single-dose oral administration of 500 mg of benflumetol. The assay procedures were within the quality control limits.  相似文献   

12.
13.
A simple, accurate and precise isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the determination of p-chloronitrobenzene (p-CNB) in rat plasma. A plasma sample was deproteinized with methanol containing the internal standard (p-bromonitrobenzene). The resulting methanol eluate obtained after centrifugation was filtered and injected into a high-performance liquid chromatograph (50 μl each). A column packed with 5 μm octadecylsilane (ODS) spherical particles was used with isocratic elution of methanol—water (45:55, v/v) at a flow-rate of 1.0 ml/min. The compounds were detected by ultraviolet absorbance at 280 nm. The retention times of p-CNB and the internal standard were 12.5 and 15.5 min, respectively, at a column oven temperature of 30°C. The results were linear from 0.05 to 100 μg/ml (r = 0.999), and the detection limit was 0.01 μg/ml. The relative error and the coefficient of variation on replicate assays were less than 7 and 10%, respectively, for all concentrations studied. The overall recoveries of p-CNB were between 97 and 105%. Plasma samples could be stored for up to one month at −20°C.  相似文献   

14.
We report a new HPLC procedure for measuring inulin in plasma and urine. Samples after dilution are boiled in mild acidic conditions and then analyzed on a C18 column. Solvent system A is 3.2 mM HCl, pH 2.5, and B is acetonitrile-3.2 mM HCl (60:40, v/v), pH 2.5. The separation is carried out in 8 min with a flow-rate of 1.0 ml/min and the absorbance monitored at 280 nm. The relationship between inulin and the recorded peak area is linear from 0.2 to 3.2 mg/ml with a correlation coefficient of 0.999 for plasma and 0.999 for urine. Within-run precision, measured at three inulin concentrations, ranged from 0.9 to 1.7% in plasma and from 0.8 to 1.2% in urine. Between-run precision varied in plasma from 2.7 to 3.2% and in urine from 3.0 to 3.3%. Analytical recovery ranged from 102 to 107% in plasma and from 101 to 105% in urine, respectively. The method is sensitive, selective and only 30-μl samples are required. Therefore, it could be used to evaluate the glomerular filtration rate even in small babies and to perform studies in animals.  相似文献   

15.
16.
A sensitive high-performance liquid chromatographic assay has been developed to determine the concentrations of the HIV-protease inhibitor indinavir in human plasma. The sample pretreatment involved a protein precipitation procedure using 100 μl of human plasma and 400 μl of acetonitrile. Chromatography was carried out on an Octadecyl column using a mobile phase of acetonitrile–water (40:60, v/v). The water phase contained 50 mM phosphate buffer pH 6 and 4 g/l tetramethylammoniumchloride. Ultraviolet detection at 210 nm was used. The method has been validated with regard to specificity, detection limit, lower and upper limit of quantitation, recovery, accuracy, and inter- and intra-assay precision. Stability tests under various conditions were performed. The bioanalytical assay is now in use for the determination of indinavir in several clinical pharmacokinetic studies in HIV-infected patients.  相似文献   

17.
A reversed-phase high-performance liquid chromatographic method is described for the simultaneous determination of idarubicin and idarubicinol in rat plasma. Blood samples were analyzed from 16 rats which had received an intravascular dose of 2.25 mg kg−1 idarubicin. After deproteinization with acetonitrile, the separation was performed with a LiChrospher 100 RP-18 column (5 μm), using fluorescence detection (excitation: 485 nm/emission: 542 nm). The mean recovery was 95.6% for idarubicin and 90.7% for idarubicinol, respectively. The detection limit was 0.25 ng ml−1 using an injection volume of 50 μl. Daily relative standard deviation (RSD) was 3.2% (10 ng idarubicin/ml, n=10) and 4.4% (10 ng idarubicinol/ml, n=10).  相似文献   

18.
A simple gradient reversed-phase high-performance chromatographic method with ultraviolet detection for the determination of fluvastatin (FV) and its five metabolites, (M-2, M-3, M-4, M-5 and M-7) in human plasma was developed and validated. The limit of quantification of FV and its five metabolites in human plasma was 10 ng ml−1. The assay had satisfactory selectivity, recovery, linearity and precision accuracy. Stability studies showed that FV and its five metabolites were stable in plasma up to at least 1 month of storage at −30°C.  相似文献   

19.
A rapid automated method has been developed for the determination of clindamycin, a lincosamide antibiotic, in human plasma. Coupled column HPLC was used after precipitation of plasma proteins with a saturated ammonium sulfate solution. As a first step, the drug and internal standard were trapped on a precolumn of LiChrospher 60RP-select B. A reversed-phase Nucleosil 100 C18 HD column then separated drug and internal standard from each other and from remaining plasma components. The assay was validated in the range 0.2–10.0 μg ml−1 plasma. The results obtained for accuracy, intra- and inter-day precision complied very well with the generally accepted criteria for bioanalytical assays.  相似文献   

20.
A new method for the determination of ofloxacin in human plasma was developed. Plasma proteins were precipitated with acetonitrile, the supernatant concentrated and injected into a reversed-phase C18 column. Enoxacin was used as an internal standard. The fluorimetric detection was performed at 282 nm for excitation and 450 nm for emission. Limit of quantitation was 20 ng/ml and the calibration curve was linear up to 6900 ng/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号