首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Motion-reversal visual evoked responses (VERs) have remarkable waveform variability. In our opinion this is caused by the alternative predominance of either motion or pattern-onset/offset related components. The motion dependent component of motion-reversal VER closely resembles motion-onset VER (main negative peak with the latency of about 170 ms), the first positive peak (with the latency of about 100 ms) corresponds to the pattern-onset component and the second non-constant positive peak (with the latency of about 130 ms) seems to be identical with the pattern-offset positivity. The differences in expression of these components are dependent on some stimulus characteristics (mainly on the contrast of a structure, velocity of motion, retinal localization of the stimulus) and on substantial differences in the sensitivity of subjects to motion stimulation.  相似文献   

3.
Acetylcholine released from the visual and sensorimotor cortices was collected in awake rabbits while they were responding for water reinforcement under one of four behavioural paradigms. Acetylcholine release from both sites was found to increase over baseline levels in all behavioural conditions. This was interpreted as due to the diffuse cholinergic input to the cortex from the reticular formation. However, in one condition a significantly greater increase was observed from sensorimotor cortex alone. This supports the existence of a second, more specific cholinergic component in the cortex.  相似文献   

4.
Primary somatosensory evoked responses to tapping and pinprick of contralateral central palmar skin, recorded from human scalp, yielded significant differences of peak latency but not of amplitude, suggesting afferent conduction by two populations of primary fibers, Group II and Group III respectively. Pinprick first positives were always later for all conscious subjects, and sometimes larger. A model for cortical discrimination of signal phase and frequency is related to these data.  相似文献   

5.
Signal summation and minimally adapting tactile stimulation techniques permit the resolution of a critical time domain of the somatosensory evoked response, recorded from human scalp, which is sensitive to the stimulus variables represented by the sensations of tapping and pinprick respectively. The variation of this time-domain suggests the influence of myelinated mechanical nociceptors in the Group III range.  相似文献   

6.
Experiment 1 elicited the P1, N1, P2, and N2 components of the long latency auditory evoked potential (AEP) using a 1000 Hz tone presented at 30, 50, or 70 dB SPL and 1-, 3-, or 5-second inter-stimulus intervals to assess the relative effects of the combination of these variables on component amplitude and latency. Four blocks of 16 tone presentations each were recorded from each subject to determine if changes in the AEP would occur because of short-term habituation. Both stimulus factors interacted significantly in a systematic fashion for the amplitude measures, with increases in latency also associated with increases in intensity and inter-stimulus interval. Only minor changes across the four trial blocks for either the amplitude or latency measures were observed over the various stimulus presentation conditions. Experiment 2 employed the same tone stimulus presented at 50 dB SPL and a 3-second inter-stimulus interval. Eight blocks of 64 trials were recorded from each subject on each day for four days to investigate long-term habituation effects. No substantial changes in any of the component amplitudes or latencies were obtained across the 32 trial blocks. It was concluded that intensity and inter-stimulus interval interact to determine AEP amplitude as well as latency values and that the constituent components do not change appreciably with repeated stimulus presentations, even after several days.  相似文献   

7.
8.
9.
A quantum of transmitter may be released upon the arrival of a nerve impulse if the influx of calcium ions through a nearby voltage-dependent calcium channel is sufficient to activate the vesicle-associated calcium sensor protein that triggers exocytosis. A synaptic vesicle, together with its calcium sensor protein, is often found complexed with the calcium channel in active zones to form what will be called a "synaptosecretosome." In the present work, a stochastic analysis is given of the conditions under which a quantum is released from the synaptosecretosome by a nerve impulse. The theoretical treatment considers the rise of calcium at the synaptosecretosome after the stochastic opening of a calcium channel at some time during the impulse, followed by the stochastic binding of calcium to the vesicle-associated protein and the probability of this leading to exocytosis. This allows determination of the probabilities that an impulse will release 0, 1, 2,... quanta from an active zone, whether this is in a varicosity, a bouton, or a motor endplate. A number of experimental observations of the release of transmitter at the active zones of sympathetic varicosities and boutons as well as somatic motor endplates are described by this analysis. These include the likelihood of the secretion of only one quantum at an active zone of endplates and of more than one quantum at an active zone of a sympathetic varicosity. The fourth-power relationship between the probability of transmitter release at the active zones of sympathetic varicosities and motor endplates and the external calcium concentration is also explained by this approach. So, too, is the fact that the time course of the increased rate of quantal secretion from a somatic active zone after an impulse is invariant with changes in the amount of calcium that enters through its calcium channel, whether due to changes consequent on the actions of autoreceptor agents such as adenosine or to facilitation. The increased probability of quantal release that occurs during F1 facilitation at the active zones of motor endplates and sympathetic boutons is predicted by the residual binding of calcium to a high-affinity site on the vesicle-associated protein. The concept of the stochastic operation of a synaptosecretosome can accommodate most phenomena involving the release of transmitter quanta at these synapses.  相似文献   

10.
Cortical evoked responses to median nerve stimulation were recorded from 21 subjects during sevoflurane anaesthesia at the level of burst suppression in EEG. The N20/P22 wave had the typical form of a negative wave postcentrally, and positive precentrally. The amplitude exceeded 4 μV in all patients, making it easily visible without averaging on the low-amplitude suppression. These results show that two kinds of somatosensory evoked potential can be studied without averaging during EEG suppression in deep anaesthesia. One is the localised N20/P22 wave, which is seen regularly during suppression after stimuli with intervals exceeding 1 s. The other is the burst, involving the whole cortex, which is not evoked by every stimulus. We suggest that somatosensory evoked potentials can be monitored during sevoflurane-induced EEG suppression, and often can be evaluated reliably from a couple of single sweeps with stimulation interval exceeding 1 s. The enhancement of early cortical components of SEP, their adaptation to repeated stimuli, and the disappearance of later polysynaptic components during EEG suppression, give new possibilities to study the generators of SEP and the different effects of anaesthetics.  相似文献   

11.
12.
13.
Respiratory-related evoked potentials (RREPs) have been elicited by inspiratory loads in adults and children. The RREP was recorded over the somatosensory region of the cerebral cortex. It was hypothesized that a RREP could be recorded by using expiratory occlusion. Electroencephalographic activity was recorded in adults from 14 scalp locations, referenced to the linked earlobes. The occlusion was presented as an interruption of expiration. Epochs of electroencephalographic activity and mouth pressure were recorded for each expiratory occlusion presentation. There were two occlusion trials and a control trial of 100 presentations each. The epochs in each trial were averaged and examined for the presence of short-latency, occlusion-related peaks. RREP peaks were observed bilaterally with expiratory occlusion and were absent in control unoccluded averages. A positive peak, P(34), was observed at central and postcentral sites. A negative peak, N(53), was observed at frontal and central sites. A second positive peak, P(95), was observed at frontal and central sites. These results demonstrate that expiratory occlusion elicits a RREP. This suggests that expiratory occlusion-related sensory information activates the cerebral cortex similar to that for inspiratory loads.  相似文献   

14.
Eight white New Zealand rabbits were submitted to auditory stimulation in order to obtain normative BAEP parameters. A monaural alternating 0.1 ms click stimulation at 20 Hz, 90 dB was used. Two series of 1000 responses were averaged (10 ms time-base, 160-3000 Hz band-pass) and highly reproducible peaks were obtained. Peaks P1, P2, P3, P4 were obtained in all ipsilateral recordings, whereas peak P5 was detectable in only 6 animals. In contralateral recordings P1 was absent and the following peaks were similar to those of ipsilateral recordings. Normative values of absolute and interpeak latencies, peak amplitudes and amplitude ratios were obtained. The procedure was repeated 24 hours after basal recordings and measures of test-retest variability were obtained.  相似文献   

15.
Auditory sensitivity based on auditory brain stem response (ABR), whole nerve action potential (AP), and cochlear microphonics (CM) to tone bursts of 0.5-8 kHz were compared with behavioral audiometry in the Japanese monkeys. Although sensitivity loss at 4-6 kHz was observed in these potentials, an increase in sensitivity at 8 kHz was obtained only in the ABR. Thus the sensitivity loss at 4-6 kHz originates at the peripheral system and the increased sensitivity at 8 kHz originates at the central.  相似文献   

16.
17.
Somatosensory evoked potentials by posterior tibial nerve stimulation at the ankle were performed in 74 healthy volunteers (36 females and 38 males) aged 14-76 years. Cortical potentials were obtained in all subjects and spinal potentials (N22) in 71 subjects. All parameters were related to subject's age, height and sex. Sex influenced only P40-N50 amplitude, which was greater in females. All latencies of spinal and cortical components increased in a similar manner with subject's height (about 0.16-0.18 ms per cm), whereas the N22-P40 interpeak latency was independent from height, but related to T12-Cz distance. Absolute latencies of the spinal and of most cortical components, but not interpeak latencies, increased with subject's age (about 0.06-0.09 ms per year). The parameters to compute normative data (according to univariate or bivariate regression models) are furnished. Limits of right-left differences are reported.  相似文献   

18.
Somatosensory evoked potentials (SEPs) to median and posterior tibial nerve stimulation were studied in 160 subjects aged 20–90 years. Height was highly correlated with latencies of spinal and cortical SEPs (N13, N20, N22, and P40). Although tibial central conduction (N22-P40) was also highly correlated with height, median conduction (N13–N22) was not correlated with the latter.Multiple correlation and regression analysis showed that except for the median N13–N20 latency, height provided the best prediction of the remaining SEP latencies. Age alone was not correlated with SEP latencies, but its significance was observed when age and height were considered together as the predictors. Effects of age and height on SEP latencies were independent of gender.The present data indicate that except for the N13–N20 conduction, height is the most important parameter for SEP latencies and can be used for construction of normograms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号