首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation between Cys 697 (SH1) and Cys 707 (SH2) of the heavy chain of myosin subfragment-1 was previously measured by fluorescence resonance energy transfer with a donor linked to SH1 and an acceptor to SH2. In the present study the distribution of the distances between the two thiols was recovered from frequency-domain fluorometry. In the native state and in the presence of ligands such as MgADP, pyrophosphate, orthovanadate (Vi) and actin, we found wide distributions of the separations between SH1 and SH2 (11-16 A) comparable to that found in the random-coil state (20 A). These results suggest that the SH1-SH2 segment has a high degree of conformational flexibility even in native S1. The flexibility is not much affected by the physiological state of S1. However, the ligands MgADP, Vi and MgADP + Vi decrease significantly the mean SH1-SH2 distance from 27 to 17 A with the effect of MgADP+ Vi being the most pronounced. The anisotropy decay of donor-labeled S1 is biphasic with two rotational correlation times. The long component is decreased by these ligands from 289 to 93 ns, suggesting a more compact symmetric structure of S1 in the presence of the ligands. The complex S1(MgADP)Vi has been shown to be a stable analogue of S1(MgADP)Pi, an unstable intermediate that is generated in the actomyosin ATPase cycle during muscle contraction. Since the power stroke of muscle is accompanied by release of Pi from S1(MgADP)Pi, the present results are consistent with a model in which force generation can be accompanied by transition of S1 from a highly symmetric or compact structure to a more extended structure.  相似文献   

2.
The actin-dependent ATPase activity of myosin is retained in the separated heads (S1) which contain the NH2-terminal 95-kDa heavy chain fragment and one or two light chains. The S1 heavy chain can be degraded further by limited trypsin treatment into characteristic 25-, 50-, and 20-kDa peptides, in this order from the NH2-terminal end. The 20-kDa peptide contains an actin-binding site and SH1 and SH2, two thiols whose modification dramatically affects ATPase activity. By treating myosin filaments with trypsin at 4 degrees C in the presence of 2 mM MgCl2, we have now obtained preferential cleavage at the 50-20-kDa heavy chain site without any cleavage at the head-rod junction and hinge region in the rod. Incubation of these trypsinized filaments at 37 degrees C in the presence of MgATP released a new S1 fraction which lacked the COOH-terminal 20-kDa heavy chain peptide region. This fraction, termed S1'(75K), has more than 50% of the actin-activated Mg2+-ATPase activity of S1 and the characteristic Ca2+-ATPase and K+-EDTA ATPase activities of myosin. These results show that SH1 and SH2 are not essential for ATPase activity and that binding of actin to the 20-kDa region is not essential for the enhancement of the Mg2+-ATPase activity.  相似文献   

3.
C R Cremo  J C Grammer  R G Yount 《Biochemistry》1988,27(22):8415-8420
Myosin subfragment 1 (S1) can be specifically photomodified at the active site without polypeptide chain cleavage by irradiating the stable MgADP-orthovanadate-S1 complex with UV light above 300 nm [Grammer, J. C., Cremo, C. R., & Yount, R. G. (1988) Biochemistry (preceding paper in this issue)]. Here, the UV spectral properties of photomodified S1 were used to determine the nature and location of the photomodified residue(s) within S1. By comparison of the unusual pH dependence of the UV absorption spectrum of the photomodified S1 to that of the S1-MgADP-Vi complex as a control, the photomodified residue(s) was (were) localized to the 23-kDa NH2-terminal tryptic peptide of the heavy chain. NaBH4 reduced the photomodified S1, but not the control, to regenerate the original spectral properties and ATPase activities of the unmodified S1. Amino acid analysis of photomodified S1 reduced with NaB3H4 gave only [3H]serine, suggesting the hydroxyl group of serine had been oxidized to a "serine aldehyde". The pH dependence of the absorption spectrum of the photomodified enzyme can be explained by an equilibrium between a chromophoric enolate anion of the serine aldehyde (favored in base) and less chromophoric keto and enol forms (favored in acid). The oxidized serine(s) was (were) shown to be directly involved with the vanadate-dependent photocleavage of the S1 heavy chain previously described by Grammer et al. (1988). This serine(s) is (are) likely to be important to the binding and hydrolysis of the gamma-PO4 of ATP at the active site of S1.  相似文献   

4.
C R Cremo  G T Long  J C Grammer 《Biochemistry》1990,29(34):7982-7990
The heavy chain of myosin's subfragment 1 (S1) was cleaved at two distinct sites (termed V1 and V2) after irradiation with UV light in the presence of millimolar concentrations of vanadate and in the absence of nucleotides or divalent metals. The V1 site cleavage appeared to be identical with the previously described active site cleavage at serine-180, which is effected by irradiation of a photomodified form of the S1-MgADP-Vi complex [Cremo, C. R., Grammer, J. C., & Yount, R. G. (1989) J. Biol. Chem. 264, 6608-6011]. The V2 site was cleaved specifically, without cleavage at the V1 site, first by formation of the light-stable S1-Co2+ADP-Vi complex at the active site [Grammer, J. C., Cremo, C. R., & Yount, R. G. (1988) Biochemistry 27, 8408-8415] and then by irradiation in the presence of millimolar vanadate. By gel electrophoresis, the V2 site was localized to a region about 20 kDa from the COOH terminus of the S1 heavy chain. From the results of tryptic digestion experiments, the COOH-terminal V2 cleavage peptide appeared to contain lysine-636 in the linker region between the 50- and 20-kDa tryptic peptides of the heavy chain. This site appeared to be the same site cleaved by irradiation of S1 (not complexed with Co2+ADP-Vi) in the presence of millimolar vanadate as previously described [Mocz, G. (1989) Eur. J. Biochem. 179, 373-378]. Cleavage at the V2 site was inhibited by Co2+ but was not significantly affected by the presence of nucleotides or Mg2+ ions. Tris buffer significantly inhibited V2 cleavage. From the results of UV-visible absorption, 51V NMR, and frozen-solution EPR spectral experiments, it was concluded that irradiation with UV light reduced vanadate +5 to the +4 oxidation state, which was then protected from rapid reoxidation by O2 by complexation with the Tris buffer. The relatively stable reduced form or forms of vanadium were not competent to cleave S1 at either the V1 or the V2 site. 51V NMR titration experiments indicated that a tetrameric species of vanadium preferentially bound to S1 and to the S1-MgADP-Vi complex, whereas no binding of either the monomeric or dimeric species could be detected. These results suggest that the vanadate tetramer was responsible for the photocleavage of S1 which occurred at both the V1 and V2 sites in the absence of nucleotides or divalent metals.  相似文献   

5.
Myosin subfragment 1 (S1) is cleaved by near-ultraviolet irradiation in the presence of vanadate at three sites located at 23, 31 and 74 kDa from the N-terminus. Since vanadate is considered to be a good structural analogue of phosphate, it is assumed that the cleavage sites participate in forming the phosphate-binding site(s) of S1. In this work, the effect of various ions on the vanadate-induced photocleavage of S1 was studied. Monovalent anions were found to inhibit photocleavage in the 50-200 mM range. The inhibition is more expressed at a site 74 kDa from the N-terminus than at the 23-kDa and 31-kDa sites. The inhibitory effect of the monovalent anions increases in the order acetate = F- less than Cl- less than Br- less than I- = SCN-. The order of the inhibitory effect is identical to the protein-structure-damaging effect of monovalent anions in the von Hippel series [von Hipel, P. H. & Wong, K. Y. (1964) Science 145, 577-581]. Therefore, it is assumed that decreased photocleavage is due to local perturbations of structure, especially at the 74-kDa site, in addition to increased ionic strength. Divalent anions, sulfate and thiosulfate, strongly inhibit photocleavage at 2 mM. The inhibition is very pronounced at the 23-kDa and 31-kDa sites, while the 74-kDa site is hardly affected. Since photocleavage at the 23-kDa and 31-kDa sites is regulated jointly and independently from cleavage at the 74-kDa site, it is assumed that S1 has two distinct phosphate-binding sites: the regions of the 23-kDa and 31-kDa cleavage sites, which are proximal to each other in the spatial structure, participate in forming the first phosphate-binding site, while the 74-kDa site is part of the second binding site. Sulfate was also found to inhibit the trapping of vanadate and to facilitate its release from the S1-MgADP-Vi (Vi, inorganic vanadate) complex. Photocleavage of S1 takes place at all three sites, both in the presence or absence of divalent cations, indicating that these, including Mg2+, are not essential for cleavage.  相似文献   

6.
The effect of ligand binding on the environment near the SH2 and SH1 thiols in myosin subfragment 1 has been investigated by photocross-linking after specific labeling of these thiols individually with 4-(N-maleimido)benzophenone (MBP). On photolysis, cross-linking occurred from SH2-MBP to the middle 50-kDa segment, and subsequent immunopeptide mapping revealed that the cross-link was made to a peptide stretch 31-32 kDa from the N terminus in the absence of MgADP, whereas in its presence the cross-link occurred at about 60-61 kDa from the N terminus. Photolysis of SH1-MBP in the absence of MgADP resulted in a major cross-link to the 27-kDa N-terminal segment and minor cross-links to the 50-kDa middle segment. In the presence of MgADP, no new cross-link occurred but the amount of cross-linking to the 50-kDa segment increased at the expense of the other. Immunopeptide mapping indicated that the regions in the 27- and 50-kDa peptides that were cross-linked to SH1-MBP are at about 14-16 and 55-56 kDa from the N terminus respectively. These results indicate that when nucleotide binds to S1, SH2 is displaced relative to the 50-kDa segment, whereas the local environment around SH1 does not change significantly because photolysis in the presence of MgADP resulted in a change at the site of cross-linking for SH2-MBP but caused only a redistribution of the relative amounts of the cross-links formed from SH1-MBP.  相似文献   

7.
Irradiation of soluble dynein 1 from sea urchin sperm flagella at 365 nm in the presence of MgATP and 0.05-50 microM vanadate (Vi) cleaves the alpha and beta heavy chains (Mr 428,000) at their V1 sites to give peptides of Mr 228,000 and 200,000, without the nonspecific side effects produced by irradiation at 254 nm as described earlier (Lee-Eiford, A., Ow, R. A., and Gibbons, I. R. (1986) J. Biol. Chem. 261, 2337-2342). The decrease in intact heavy chain material is biphasic; in 10 microM Vi, approximately 80% occurs with a half-time of 7 min and the remainder with a half-time of about 90 min, and the yield of cleavage peptides is better than 90%. Loss of dynein ATPase activity appears to be a direct result of the cleavage process and is not significantly affected by the presence of up to 0.1 M cysteamine (CA, 60-23-1) or 2-aminoethyl carbamimidothioic acid dihydrobromide (CA, 56-10-0) as free radical trapping agents. The concentration of Vi required for 50% maximal initial cleavage rate is 4.5 microM, while that for 50% ATPase inhibition is 0.8 microM, both in a 0.6 M NaCl medium. In the presence of 20 microM Vi, CTP and UTP support cleavage at about half the rate of ATP, whereas GTP and ITP support cleavage only if the Vi concentration is raised to about 200 microM. Substitution of any of the transition metal cations Cr2+, Mn2+, Fe2+, or Co2+ for the usual Mg2+ suppresses the photocleavage, presumably by quenching the excited chromophore prior to scission of the heavy chain. The photocleaved dynein 1 binds to dynein-depleted flagella similarly to intact dynein 1, but upon reactivation of the flagella with 1 mM ATP their motility is partially inhibited, rather than being augmented as with intact dynein. These results indicate that Vi acts as a photosensitizing catalyst and suggest that the cleavage proceeds through excitation of Vi bound to dynein at the hydrolytic ATP binding site on each heavy chain, probably in a dynein X MgADP X Vi complex. The exquisite specificity of Vi-sensitized photocleavage will aid the peptide mapping of dynein heavy chains and may be of broader use in studies of protein structure.  相似文献   

8.
Ligand-induced myosin subfragment 1 global conformational change   总被引:4,自引:0,他引:4  
S Highsmith  D Eden 《Biochemistry》1990,29(17):4087-4093
The effects of selected ligands on the structure of myosin subfragment 1 (S1) were compared by using transient electrical birefringence techniques. With pairs of dilute solutions of S1 at 3.5 degrees C in low ionic strength (mu = 0.020 M) buffers that had matched electrical impedances, S1 with Mg2+, MgADP, or MgADP.Vi bound was subjected to 6-7-microseconds external electrical fields in the Kerr law range. Specific Kerr constants and the rates of rotational Brownian motion after the electric field was removed were measured. Neither Mg2+ nor MgADP had a measurable effect on either observable, but when orthovanadate (Vi) bound S1.MgADP it decreased the rotational correlation coefficient from 267 +/- 6 to 244 +/- 10 ns. Parallel measurements of MgATPase activity indicated that S1.MgADP.Vi was greater than 95% inhibited. These results confirm the conclusion of Aguirre et al. [(1989) Biochemistry 28, 799] that Vi binding to S1.MgADP increases its rate of rotational Brownian motion and provide data that are more quantitatively correlated with S1 structure. The Vi-induced change in the rotational correlation coefficient is consistent with S1 becoming more flexible or more compact when Vi binds. Assuming that S1.MgADP.Vi is an analogue for S1.MgADP.Pi, the structural changes observed for S1-ligand complexes in solution are discussed in relation to possible structural changes of intermediates on the kinetic pathway of ATPase hydrolysis. A new model of force generation by S1 in muscle is hypothesized.  相似文献   

9.
The conformations of myosin subfragment 1 containing trapped MgADP or MgPPi have been studied by investigating the spatial disposition of the remainder of the subfragment 1 structure to the covalently bridged ATPase-related thiols SH1 and SH2. This has been done by synthesizing a trifunctional photoactivatable reagent 4,4'-bis(N-maleimido)benzophenone and reacting it with subfragment 1 in the presence of these ligands. Modification of subfragment 1 by this reagent mimics closely the changes in the ATPase properties as noted previously for modification with p-phenylenedimaleimide. In addition, noncovalent trapping of nucleotide also results, presumably by the bridging of the SH1 and SH2 thiols. On photolysis, cross-linking from the reagent bridging the thiols to other regions in subfragment 1 can be observed, but the extent and course of the photoinduced cross-linking depend on the nature of the trapped ligand. For subfragment 1 with trapped MgADP, a high efficiency cross-linking occurs between the 21-kDa segment and the 50-kDa segment. With MgPPi as the trapped ligand, low efficiency cross-linking occurs between the bridged thiols and either the 27-kDa N-terminal or the 50-kDa segments of the heavy chain. These results indicate that without the adenosine moiety, the binding of MgPPi to subfragment 1 leaves the protein in a flexible state so that residues in both the 27-kDa and the 50-kDa segment can move within the cross-linking span of the activated benzophenone triplet. The trapping of MgADP apparently results in a more rigid state for the subfragment 1 in which residues in the 50-kDa segment are spatially close to the bridged thiols, thus enabling photocross-linking to proceed with higher efficiency.  相似文献   

10.
D G Cole  R G Yount 《Biochemistry》1992,31(27):6186-6192
The properties of divalent metal.ADP.vanadate (V(i)) complexes of the 6S extended and 10S folded conformations of gizzard myosin before and after UV irradiation have been studied. The half-lives of both 6S and 10S myosin.MgADP.V(i) complexes in the dark at 0 degrees C are on the order of 2 weeks. Brief irradiation with UV light, however, photomodified the enzyme as suggested by changes in the NH(4+)-, K(+)-, and Ca(2+)-ATPase activities, and destabilized the complexes. The 6S complex, when irradiated, released ADP and V(i) rapidly (t1/2 less than or equal to 1 min) as has been observed in comparable experiments with skeletal myosin subfragment 1 (S1) [Grammer et al. (1988) Biochemistry 27, 8408-8415]. The irradiated 10S complex released approximately 20% of the ADP and V(i) rapidly (t1/2 less than or equal to 1 min), but the remainder stayed trapped, possibly as the vanadyl (VO2+).ADP complex, for much longer times (t1/2 approximately 8 h). The site of photomodification was sought by reducing both photomodified 6S and 10S myosin with NaB3H4. Amino acid composition analyses identified [3H]serine as the only labeled residue(s), suggesting that the hydroxymethyl group of serine had been oxidized to an aldehyde as shown previously for photomodified skeletal myosin S1 [Cremo et al. (1989) J. Biol. Chem. 264, 6608-6611]. The 29-kDa NH2-terminal tryptic peptide from the heavy chain was found to contain essentially all of the [3H]serine. Preparations of 6S and 10S [3H]myosin were digested exhaustively with trypsin. An identical [3H]peptide was purified from each preparation and its sequence determined to be Glu169-Asp-Gln-Ser-Ile-Leu-(Cys)-Thr-Gly-[3H]Ser-Gly-Ala-Gly-Ly s183.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The structural consequences of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca2(+)-ATPase activity as a function of reaction time, it appears that the reagent rapidly modifies SH1 irrespective of whether MgADP is present or not. In the absence of nucleotide, only extremely low levels of cross-linking to the 50-kDa middle segment of S1 can be detected, while in the presence of MgADP substantial cross-linking to this segment is observed. A similar cross-link is also formed if MgADP is added subsequent to the reaction of the SH2-NEM-pre-modified S1 with pPDM in the absence of nucleotide. Isolation of the labeled tryptic peptide from the cross-linked adduct formed with [14C]pPDM, and subsequent partial sequence analyses, indicates that the cross-link is made from SH1 to Cys-522. Moreover, it appears that this cross-link results in the trapping of MgADP in this S1 species. These data suggest that the binding of MgADP results in a change in the structure of S1 in the vicinity of the SH1 thiol relative to the 50-kDa "domain" which enables Cys-522 to adopt the appropriate configuration to enable it to be cross-linked to SH1 by pPDM.  相似文献   

12.
One of the reactive thiols in the myosin head, SH1, was covalently labeled with a biotin derivative, N-iodoacetyl-N'-biotinylhexylenediamine. When 50% of the SH1 thiol was modified with the biotin reagent as judged from measurements of ATPase activities, the biotinylated myosin bound one mole of avidin per mole of myosin at the saturating level. The avidin-myosin complex was readily formed in the presence of MgADP or MgATP. Peptide maps of the biotinylated myosin revealed that SH1 is actually the site of biotinylation with N-iodoacetyl-N'-biotinylhexylenediamine. Electron microscopic examination of the avidin-myosin complex showed that the attachment site of avidin on the myosin head is 130 A from the head-rod junction, indicating that the SH1 thiol is located there.  相似文献   

13.
Atomic structures of scallop myosin subfragment 1(S1) with the bound MgADP, MgAMPPNP, and MgADP.BeF(x) provide crystallographic evidence for a destabilization of the helix containing reactive thiols SH1 (Cys703) and SH2 (Cys693). A destabilization of this helix was not observed in previous structures of S1 (from chicken skeletal, Dictyostelium discoideum, and smooth muscle myosins), including complexes for which solution experiments indicated such a destabilization. In this study, the factors that influence the SH1-SH2 helix in scallop S1 were examined using monofunctional and bifunctional thiol reagents. The rate of monofunctional labeling of scallop S1 was increased in the presence of MgADP and MgATPgammaS but was inhibited by MgADP.V(i) and actin. The resulting changes in ATPase activities of S1 were symptomatic of SH2 and not SH1 modification, which was confirmed by mass spectrometry analysis. With bifunctional reagents of various lengths, cross-linking did not occur on a short time scale in the absence of nucleotides. In the presence of MgADP, cross-linking was greatly enhanced for all of the reagents. These reactions, as well as the formation of a disulfide bond between SH1 and SH2, were much faster in scallop S1.ADP than in rabbit skeletal S1.ADP and were rate-limited by the initial attachment of the reagent to scallop S1. The cross-linking sites were mapped by mass spectrometry to SH1 and SH2. These results reveal isoform-specific differences in the conformation and dynamics of the SH1-SH2 helix, providing a possible explanation for destabilization of this helix in some scallop S1 but not in other S1 isoform structures.  相似文献   

14.
Near-UV irradiation in the presence of vanadate cleaves the heavy chain of myosin subfragment 1 at three specific sites located at 23, 31, and 74 kDa from the N-terminus. Increasing the pH from 6.0 to 8.5, gradually, reduces the efficiency of the cleavage and completely eliminates the 31-kDa cut. Actin specifically inhibits the photocleavage at the sites located 31 and 74 kDa from the N-terminus. ATP strongly protects from cleavage at the 23- and 31-kDa sites and less strongly from the cut at the 74-kDa site. ADP and pyrophosphate have similar, but less pronounced, effects as ATP. Orthophosphate inhibits the photocleavage at the 23- and 74-kDa sites with a similar efficiency. In the ternary actin-S-1-ATP complex, the photocleavage is inhibited at all sites, and the effects of actin and ATP are additive. Photocleavages affect the K+(EDTA)-, Ca2(+)-, and actin-activated ATPase activity of subfragment 1. Loss of all three ATPases is caused by cleavage at the 23-kDa site, while the cut at the 74-kDa site only leads to the loss of actin-activated ATPase activity. It is concluded that subfragment 1 contains at least two distinct phosphate binding sites, the first being part of the "consensus" ATP binding site wherein the 23-kDa photocleavage site is located. This site is responsible for the binding and hydrolysis of ATP. It is possible that the 31-kDa cleavage site is also associated with the "consensus" site through a loop. The 74-kDa cleavage site is a part of another phosphate binding site which may play a role in the regulation of the myosin-actin interaction.  相似文献   

15.
The photoprobe 3'(2')-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (Bz2ATP) was used to characterize the nucleotide-binding site of myosin subfragment 1 (SF1). Improved synthesis and purification of Bz2ATP are reported. 1H NMR and ultraviolet spectroscopy show that Bz2ATP is a 60:40 mixture of the 3'(2')-ribose isomers and that the epsilon M261 is 41,000 M-1 cm-1. Bz2ATP is hydrolyzed by SF1 comparably to ATP in the presence of actin or K+, NH4+, or Mg2+ ions; and the product, Bz2ADP, has a single binding site on SF1 (K'a = 3.0 X 10(5) M-1). [3H]Bz2ATP was photoincorporated into SF1 with concomitant loss of K+-EDTA-ATPase activity. Analysis of photolabeled SF1 showed that the three major tryptic peptides (23, 50, and 20 kDa) of the heavy chain fragment and the alkali light chains were labeled. The presence of ATP during irradiation protected only the 50-kDa peptide, indicating that the other peptides were nonspecifically labeled. If Bz2ATP was first trapped on SF1 by cross-linking the reactive thiols, SH1 and SH2, with p-phenylenedimaleimide, only the 50-kDa tryptic peptide was labeled. These results confirm and extend previous observations that [3H]Bz2ATP trapped on SF1 by cobalt(III) phenanthroline photolabeled the same 50-kDa peptide (Mahmood, R., and Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959). Thus, the 50-kDa peptide is labeled with or without thiol cross-linking, indicating that the relative position of SH1 and SH2 does not affect the labeling pattern.  相似文献   

16.
Recent experiments [Wells, J., & Yount, R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966] have shown it is possible to trap MgADP and other nucleotides stably at the active site of myosin by cross-linking two thiol groups. A variety of cross-linking reagents including chelation of the two thiols by cobalt (III) phenanthroline or covalent reaction with N,N'-p-phenylenedimaleimide (pPDM) are effective trapping agents. No trapping of nucleotides occurs in the absence of divalent metals. Thus far Mg2+, Mn2+, Co2+, Ni2+, and Ca2+ but not Zn2+ all function to promote trapping of the 1:1 divalent metal-ADP complex and to enhance the rate of ATPase inactivation. Substitution-inert Cr(III) complexes of ADP, ATP, or pyrophosphate that bind very weakly or not at all to the active site are not trapped by cross-linking. While the stability of the trapped divalent metals varies, e.g., t1/2 of 0.5-7 days at 0 degree C, they are stable enough to permit accurate spectral measurements of the Mn2+ and Co2+ trapped complexes. Electron paramagnetic resonance (EPR) measurements of Mn2+ bound to 5'-adenylyl imidodiphosphate or complexed to myosin chymotryptic subfragment 1 indicate that the metal is bound at the active site. Circular dichroism (CD) and visible absorption studies of the Co2+ . ADP trapped complex indicate the metal ion is in an asymmetric octahedral environment. EPR and CD measurements show that the environment of the metal nucleotide is the same whether bound reversibly or stably trapped at the active site.  相似文献   

17.
Reactive disulfide reagents (RDSs) with a biotin moiety have been synthesized and found to cause Ca2+ release from sarcoplasmic reticulum (SR) vesicles. The RDSs oxidize SH sites on SR proteins via a thiol-disulfide exchange, with the formation of mixed disulfide bonds between SR proteins and biotin. Biotinylated RDSs identified a 106-kDa protein which was purified by biotin-avidin chromatography. Disulfide reducing agents, like dithiothreitol, reverse the effect of RDSs and thus promoted active re-uptake of Ca2+ and dissociated biotin from the labeled protein indicating that biotin was covalently linked to the 106-kDa protein via a disulfide bond. Several lines of evidence indicate that this protein is not Ca2+, Mg2+-ATPase and is not a proteolytic fragment or a subunit of the 400-kDa Ca2+-ryanodine receptor complex (RRC). Monoclonal antibodies against the ATPase did not cross-react with the 106-kDa protein, and polyclonal antibodies against the 106-kDa did not cross-react with either the ATPase or the 400-kDa RRC. RDSs did not label the 400-kDa RRC with biotin. Linear sucrose gradients used to purify the RRC show that the 106-kDa protein migrated throughout 5-20% linear sucrose gradients, including the high sucrose density protein fractions containing 400-kDa RRC. Protease inhibitors diisopropylfluorophosphate used to prevent proteolysis of 400-kDa proteins did not alter the migration of 106-kDa in sucrose gradients nor the patterns of biotin labeling of the 106-kDa protein. Incorporation of highly purified 106-kDa protein (free of RRC) in planar bilayers revealed cationic channels with large Na+ (gNa+ = 375 +/- 15 pS) and Ca2+ (gCa2+ = 107.7 +/- 12 pS) conductances which were activated by micromolar [Ca2+]free or millimolar [ATP] and blocked by micromolar ruthenium red or millimolar [Mg2+]. Thus, the SR contains a sulfhydryl-activated 106-kDa Ca2+ channel with apparently similar characteristics to the 400-kDa "feet" proteins.  相似文献   

18.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to the S-S bond such as 2,2'-dithiodipyridine (2,2'-DTDP), 4,4'-dithiodipyridine, and N-succinimidyl 3(2-pyridyldithio)propionate (SPDP) trigger Ca2+ release from sarcoplasmic reticulum (SR) vesicles. They are known to specifically oxidize free SH sites via a thiol-disulfide exchange reaction with the stoichiometric production of thiopyridone. Thus, the formation of a mixed S-S bond between an accessible SH site on an SR protein and a RDS causes large increases in SR Ca2+ permeability. Reducing agents, glutathione (GSH) or dithiothreitol reverse the effect of RDSs and permit rapid re-uptake of Ca2+ by the Ca2+, Mg2+-ATPase. The RDSs, 2,2'-DTDP, 4,4'-dithiodipyridine and SPDP displaced [3H]ryanodine binding to the Ca2+-receptor complex at IC50 values of 7.5 +/- 0.2, 1.5 +/- 0.1, and 15.4 +/- 0.1 microM, respectively. RDSs did not alter the rapid initial phase of Ca2+ uptake by the pump, stimulated ATPase activity, and induced release from passively loaded vesicles with nonactivated pumps; thus they act at a Ca2+ release channel and not at the Ca2+, Mg2+-ATPase. Efflux rates increased in 0.25-1.0 mM [Mg2+]free then decreased in 2-5 mM [Mg2+]free. Adenine nucleotides inhibited the oxidation of SHs on SR protein by RDSs and thus reduced Ca2+ efflux rates. However, once RDSs oxidized these SH sites and opened the Ca2+ release pathway, subsequent additions of nucleotides stimulated Ca2+ efflux. In skinned fibers, 2,2'-dithiodipyridine elicited rapid twitches which were blocked by ruthenium red. These results indicate that RDSs trigger Ca2+ release from SR by oxidizing a critical SH group, and thus provide a method to covalently label the protein(s) involved in causing these changes in Ca2+ permeability.  相似文献   

19.
M M Werber  Y M Peyser  A Muhlrad 《Biochemistry》1992,31(31):7190-7197
Beryllium and aluminum fluorides are good phosphate analogues. These compounds, like orthovanadate, form stable complexes with myosin subfragment 1 (S1) in the presence of MgADP. The formation of the stable S1-nucleotide complexes is characterized by the loss of ATPase activity. For the complete loss of ATPase activity there was necessary a higher concentration of aluminum than of beryllium or vanadate. In the presence of MgATP the onset of the inhibition is delayed, which indicates that stable complexes cannot form when a specific site is occupied by the gamma-phosphate of ATP or by P(i) derived from the gamma-phosphate. The half-lives of the S1-MgADP-(BeF3-), S1-MgADP-(AlF4-), and S1-MgADP-Vi complexes at 0 degrees C are 7, 2, and 4 days, respectively. In the presence of actin the rate of decomposition of all of the complexes is significantly enhanced; however, the order of decomposition is reversed, the fastest rate being observed with beryllium and the slowest with aluminum. The formation of the S1-MgADP-(BeF3-) and S1-MgADP-(AlF4-) complexes is accompanied by an increase in tryptophan fluorescence similar to that observed upon addition of MgATP to S1. The fluorescence increase develops rather slowly, by suggesting that the rate-limiting step in the formation of the stable complex is an isomerization. The rate of the fluorescence change accompanying the formation of the Be complex is faster than that for the Al complex. Addition of vanadate to S1 causes a static quenching of the tryptophan fluorescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Treatment of sarcoplasmic reticulum membranes with 12 mM-methylbenzimidate (MBI) for 5 min, in the presence of 5 mM-ATP at pH 8.5, resulted in a 2-3-fold stimulation of ATP hydrolysis and over 90% inhibition of Ca2+ accumulation. This phenomenon was strictly dependent upon the presence of nucleotides with the following order of effectiveness: adenosine 5'-[beta, gamma-imido]triphosphate greater than or equal to ATP greater than UTP greater than ADP greater than AMP. Divalent cations such as Ca2+, Mg2+ and Mn2+, when present during the MBI treatment, prevented both the stimulation of ATPase activity and the inhibition of Ca2+ accumulation. Modification with MBI had no effect on E-P formation from ATP, ADP-ATP exchange, Ca2+ binding or ATP-Pi exchange catalysed by the membranes. Membranes modified with MBI in the presence of ATP and then passively loaded with Ca2+ released about 80% of their Ca2+ content within 3 s. Control membranes released only 3% of their Ca2+ during the same time period. MBI modification inhibited Ca2+ accumulation by proteoliposomes reconstituted with the partially purified ATPase but not with the purified ATPase fraction. These results suggest that MBI in the presence of ATP stimulates Ca2+ release by modifying a protein factor(s) other than the (Ca2+ + Mg2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号