首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse embryonal carcinoma (EC) line, PCC4, was used to construct a series of somatic cell hybrids which contain a single or a few human chromosomes. The hybrids all retained the EC phenotype as determined by morphology, expression of SSEA-1, lack of cell surface H-2 antigen and cytokeratin filaments, high alkaline phosphatase levels, the ability to form EC tumors ectopically in nude mice, and the ability to differentiate in response to retinoic acid. Constitutively differentiated cloned lines were derived from retinoic acid-treated hybrid cultures. Several derived lines had a phenotype indistinguishable from that of parietal endoderm cells, which includes synthesis of large amounts of laminin, type IV procollagen, and plasminogen activator. One differentiated line showed a fibroblast-like morphology. The differentiated lines derived from two of the hybrids, MCP6 and GEOC4, stably maintained the sole human chromosomal component present in the EC progenitors. These EC hybrids therefore provide a system to study developmental regulation of the introduced and stably maintained human genetic material derived from a variety of cell types.  相似文献   

2.
Treatment of F9 teratocarcinoma cells with all trans retinoic acid (RA) causes them to differentiate into two or three morphologically distinct cell types. Whereas the majority of these retinoid-derived cells exhibit properties resembling parietal endoderm, a small percentage of this differentiated cell population manifests properties distinct from the parietal endoderm cell type. The isolation and partial characterization of such a non-parietal endoderm cell line (Dif 5) derived from F9 cells following prolonged (44 days) exposure to 1 μM retinoic acid are described.Unlike the retinoid-induced parietal endoderm-like cell population, which exhibits a dramatic, characteristic morphological change upon treatment with 8-bromo cAMP, Dif 5 cells do not show any morphological change with exposure to this cAMP analog. Dif 5 cells synthesize and deposit an extracellular matrix consisting of several components of Reichert's membrane (fibronectin, laminin, and type IV collagen). This new cell line does not synthesize α-fetoprotein but does secrete plasminogen activator.An interesting property of these cells is their ability to grow in the absence of serum or other hormonal supplements. Yet the Dif 5 cells do exhibit density-dependent inhibition of growth. Unlike the parent F9 cells or parietal yolk sac (PYS-2) cells, these cells do possess specific cell surface receptors for epidermal growth factor (EGF). The growth-arrested Dif 5 cells can be reinitiated to proliferate by the addition of fetal calf serum (FCS) or EGF.The properties of Dif 5 cells determined fail to fulfill all the characteristics described for either parietal or visceral endodermal cells. This raises the possibility that Dif 5 cells might represent an endodermal cell type which is intermediate in differentiation to either parietal or visceral endoderm but which lacks the biochemical signal to complete this stage of differentiation. This new Dif 5 cell line should be of considerable value in studying the modulation of growth requirements and extracellular matrix formation during early embryonic development.  相似文献   

3.
F9 mouse teratocarcinoma stem cells differentiate into parietal endoderm cells in the presence of retinoic acid, dibutyryl cyclic AMP, and theophylline (RACT). When F9 cells are exposed to 2-5 mM sodium butyrate plus RACT, they fail to differentiate. Differentiation is assessed by induction of laminin and collagen IV mRNA, the synthesis of laminin, collagen IV and plasminogen activator proteins, and alterations in cell morphology. Butyrate inhibits differentiation only when added within 8 hr after retinoic acid addition. Thus an early event in retinoid action on F9 cells is butyrate-sensitive. The population doubling time and cell cycle distribution of F9 cells are not altered within the first 24 hr after butyrate addition, suggesting that butyrate does not inhibit differentiation by inhibition of growth or normal cycling. However, butyrate does inhibit histone deacetylation in F9 cells, and this could be the mechanism by which butyrate inhibits differentiation.  相似文献   

4.
The effects of dibutyryl cAMP on the differentiation of embryonal carcinoma F9 cells were studied mainly using the secretion of laminin and type IV collagen as the marker. For this purpose, F9 cells were labeled with 35S-methionine and radioactive proteins in the medium were analyzed by SDS-polyacrylamide gel electrophoresis. Treatment of F9 cells with retinoic acid alone induced differentiation into cells secreting type IV collagen. The combination of retinoic acid and dibutyryl cAMP stimulated laminin secretion in addition to type IV collagen secretion. This effect of dibutyryl cAMP was observed only 16 h after adding dibutyryl cAMP. Immunofluorescence staining demonstrated that the majority of the cells in culture were converted into cells secreting laminin under these conditions. In contrast to the irreversible effect of retinoic acid, the effect of dibutyryl cAMP on laminin and type IV collagen secretion was reversible at least during the first 5 days of maintaining cells in the medium containing retinoic acid plus dibutyryl cAMP. Removal of dibutyryl cAMP from the culture medium decreased the protein secretion to the basal levels within 2 days. This reversibility was not due to a change in cell number. An in vitro translation assay also suggested the reversible effect of dibutyryl cAMP on the levels of laminin mRNA. Coinciding with variations of the protein secretion, a reversible and homogeneous change in the morphology of retinoic acid generated F9 cells was observed by dibutyryl cAMP.  相似文献   

5.
We have examined cultured parietal endoderm, visceral endoderm, and extraembryonic mesoderm cells from the mouse embryo for production of the protease plasminogen activator. All of these cell types synthesize and secrete the enzyme, but the molecular characteristics of the plasminogen activators differ as defined by the apparent molecular weight in sodium dodecyl sulfate-polyacrylamide gels, the antigenic properties as defined by two antisera to distinct plasminogen activators, and the interaction with an inhibitor present in fetal bovine serum. The parietal endoderm plasminogen activator has a predominant molecular weight of 79,000, is immunoprecipitated and inhibited by an antiserum raised against a human melanoma plasminogen activator, but not by an antiserum against mouse urokinase, and is only partially inhibited by the serum inhibitor. The visceral endoderm and extraembryonic mesoderm plasminogen activators, which are identical by all criteria, have molecular weights of 48,000, are inactivated only by the anti-urokinase antibodies, and are inhibited by an inhibitor in fetal bovine serum. These results establish the presence of at least two different forms of plasminogen activator in the early mouse embryo. The distinctive nature of the enzyme produced by parietal endoderm can be used as a diagnostic marker for this cell type at this stage of development. When F9 teratocarcinoma stem cells are induced to differentiate by retinoic acid and dibutyryl cAMP, they secrete a plasminogen activator of the parietal endoderm type.  相似文献   

6.
F9 teratocarcinoma stem cells differentiate into parietal endoderm-like cells when given retinoic acid (RA) and dibutyryl cyclic adenosine monophosphate (DB-cAMP). It is generally accepted that the stem cells are resistant to the action of cAMP alone and need to be primed by RA in order to respond to cAMP. In this report, we demonstrate that F9 stem cells differentiate into parietal endoderm-like cells in the absence of exogenous RA when treated with cholera toxin and 1-methyl,3-isobutyl xanthine (CT/MIX) or 8-bromo-cAMP/MIX (8B2-cAMP/MIX). Cells treated with CT/MIX or 8B2-cAMP/MIX were morphologically similar to parietal endoderm-like cells, produced high amounts of plasminogen activator, and synthesized both type IV collagen and laminin mRNA. Conversely, markers made in abundance by stem cells such as stage-specific embryonic antigen (SSEA-1) and an mRNA species of 6.8 kb (pST6-135) were markedly reduced in CT/MIX-treated cells. To prove that cAMP alone could induce differentiation Lipidex-1000, a hydrophobic gel, was used to remove 80-90% of the endogenous serum retinoids. F9 cells grown in this retinoid-depleted serum and treated with 8B2-cAMP/MIX differentiated to parietal endoderm-like cells as shown by both dramatic changes in morphology and induction of type IV collagen mRNA. Our results indicate that the differentiation of F9 to parietal endoderm-like cells can be induced by increased intracellular cAMP and is not strictly dependent on the addition of RA.  相似文献   

7.
《Developmental biology》1986,114(2):492-503
The addition of dibutyryl cyclic AMP (dbcAMP) to aggregate cultures of F9 cells in medium containing retinoic acid (RA) directs the pathway of differentiation into parietal endoderm instead of visceral endoderm. We examined the levels of some of the markers that characterize the two pathways and studied the time of commitment of cells to either direction of differentiation by using immunoprecipitation and enzyme-linked immunosorbent assays (ELISA). For either pathway, the levels and patterns of laminin, type IV collagen, and fibronectin are the same on the first day of differentiation, characterized by slightly decreased levels of laminin and type IV collagen synthesis and an increased level of fibronectin synthesis. These levels reverse on the second day of culture when the pathways diverge markedly. The differentiation pathway, however, can be redirected into the alternate one; parietal endoderm cells become committed after 3 days, whereas visceral endoderm cells are able to change into parietal endoderm cells at any time. Thus, α-fetoprotein (AFP)-producing F9 embryoid bodies switched to dbcAMP-containing medium lose the capacity to synthesize AFP and start to express genes characteristic of parietal endoderm. Our results indicate that at least some visceral endoderm cells may redifferentiate into parietal endoderm cells. These phenomena thus mimic features of endoderm differentiation in the mouse embryo.  相似文献   

8.
We have selected a mutant F9 teratocarcinoma stem cell line, RA-5-1, which does not exhibit normal differentiation into parietal endoderm in the presence of retinoic acid, dibutyryl cyclic AMP, and theophylline (RACT). In this report, we demonstrate that the RA-5-1 mutant possesses a prolyl-4-hydroxylase enzyme with a higher Km for a synthetic collagen substrate and that this alteration results in a 6-7-fold reduction in the amount of collagen IV in the medium of RACT-treated mutant cells, as compared to wild type F9 cells. In addition, the collagen IV that is secreted by RACT-treated RA-5-1 cells has an abnormally low molecular weight and contains 6-9-fold less 4-hydroxyproline than the collagen IV secreted by RACT-treated wild type F9 cells. A brief ascorbate treatment can increase the hydroxyproline content of the collagen IV secreted by RACT-treated RA-5-1 cells. A large reduction in the amount of laminin in the medium of RACT-treated RA-5-1 mutant cells is also observed. Concomitant with the reduction in collagen IV and laminin polypeptides in the medium, the expression of several other differentiation-specific mRNAs is delayed in the RACT-treated RA-5-1 cells relative to wild type F9 cells. Moreover, the mutant cells do not exhibit the morphology or the complete growth arrest of wild type terminally differentiated parietal endoderm cells in the presence of RACT. These results suggest that a defect in the post-translational modification of collagen IV in the mutant RA-5-1 prevents the complete expression of the differentiation program in response to RACT. These experiments also demonstrate that the expression of certain differentiation-specific genes is compatible with continued proliferation in the mutant line.  相似文献   

9.
10.
11.
F9 embryonal mouse teratocarcinoma cells were differentiated to a primitive endoderm-like phenotype by retinoic acid and to a parietal endoderm-like phenotype by retinoic acid in combination with dibutyryl cyclic AMP. The secretion of tissue plasminogen activator (tPA) is a characteristic of the cells displaying the differentiated phenotypes. The fundamental question of whether tPA secretion is regulated acutely by G-protein-mediated transmembrane signaling was explored. Cells differentiated to primitive and parietal endoderm demonstrated a rapid tPA response to stimulation by beta-adrenergic agonist (isoproterenol). Adenylyl cyclase activity in response to isoproterenol and GTP, but not forskolin, was greater in primitive and parietal endoderm than F9 stem cells. Both primitive and parietal endoderm cells, but not F9 stem cells, displayed beta-adrenergic stimulation of cyclic AMP accumulation. Retinoic acid induced F9 stem cells to the primitive endoderm phenotype and increased beta-adrenergic receptor levels 3-fold. Gi alpha 2 levels declined, G beta-subunits increased, and Gs alpha levels were unchanged following differentiation to primitive endoderm. In parietal endoderm cells beta-adrenergic receptors increased 2-fold over F9 stem cells, Gi alpha 2 levels declined even further than in primitive endoderm, G beta-subunits increased compared to F9 stem cells, and Gs alpha levels again were unchanged. The marked potentiation of short-term stimulation of tPA secretion in the differentiated state may be best explained by the retinoic acid-induced increase in expression of beta-adrenergic receptors coupled with a decline in Gi alpha 2 levels. Short-term regulation by G-protein-linked receptors represents a novel mode for the control of tPA secretion.  相似文献   

12.
Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm-like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.  相似文献   

13.
It has been shown previously that dibutyryl cyclic AMP increases the production of plasminogen activator in mouse parietal endoderm cells. This fact suggested that the production of plasminogen activator by parietal endoderm cells may be under the control of a hormone acting via adenylate cyclase. We have cultured rat parietal endoderm cells in the absence of serum and show that they respond to dibutyryl cyclic AMP with an increase in plasminogen activator production and a change in morphology. We describe the existence of a compound from pituitary which is capable of stimulating plasminogen activator secretion in these cells. Relatively impure preparations of ovine and bovine TSH contain significant amounts of activity, whereas more highly purified preparations of TSH, and all other pituitary hormones tested, are inactive, indicating that the factor is not a known pituitary hormone. The active compound was characterized using ovine and bovine TSH as a source, and it is macromolecular and proteinaceous, and depends on protein synthesis for its effect. The stimulation is enhanced by methylisobutylxanthine, a phosphodiesterase inhibitor, suggesting that the event is mediated by cyclic AMP. This observation leads to the prediction that the coaddition of dibutyryl cAMP and the active compound at nonsaturating concentrations should be additive. Instead, the stimulation is synergistic, and depends on the addition of dibutyryl cyclic AMP first when the compounds are added sequentially. Finally, we show that mouse teratocarcinoma cells chemically induced to differentiate to a cell type indistinguishable from parietal endoderm respond to a source of the compound by increasing plasminogen activator production.  相似文献   

14.
Adhesion-defective EC cells were isolated from a population of mutagenized F9 cells by serial transfer of cells that did not adhere to gelatin-coated dishes. The variant cells grew in suspension as multicellular clusters of loosely aggregated cells. The cells adhered to, but did not flatten on, fibroblast monolayers and extracellular matrix produced by parietal-like endoderm. Two different mutant cell lines exhibited increased sensitivity to the lectin abrin and decreased sensitivity to wheat germ agglutinin, suggesting that changes in cell surface glycosylation are associated with the mutant phenotype. These adhesion-defective mutants were used to study the relationship between cell-cell adhesion and endodermal differentiation. Unlike wild-type cells, when cultured with low concentrations of retinoic acid (RA) in suspension culture, the mutant cells did not form embryoid bodies but remained as loosely adhering strings of cells. Electron microscopic examination revealed that most of the differentiated variant cells resembled parietal endoderm, and this was confirmed by immunofluorescent staining for TROMA-3 marker. The levels of some of the markers that characterize the differentiative pathways were examined by immunoprecipitation and by enzyme-linked immunosorbent assay (ELISA). The variant line produced higher levels of laminin and type IV collagen compared to the wild-type cells. alpha-Fetoprotein (AFP) was produced at a significantly lower level by the variant compared to wild-type F9 cells during the differentiative process. The results show that variant cells differentiated toward parietal endoderm but have a very much restricted ability to differentiate to visceral endoderm. We conclude that aggregation and/or compaction provide some essential signals during the differentiation of F9 cells into epithelial layers of visceral endoderm.  相似文献   

15.
16.
17.
The effect of retinoic acid treatment on cell attachment to plastic substrates precoated with fibronectin, gelatin, laminin, and type IV collagen was investigated. Both retinoic acid-treated and control cells attached efficiently to fibronectin or gelatin substrates without any significant difference. In contrast, retinoic acid-treated cells attached to laminin or type IV collagen substrates, while control cells showed little or no attachment. The minimal effective concentration of retinoic acid for pretreatment to yield a significant increase in the attachment assay was higher than 10(-8) M. The attachment of retinoic acid-treated cells to laminin substrates reached a maximum at 60 min, while that to type IV collagen substrates had a time lag and did not reach a maximum by 60 min. The effect of retinoic acid treatment reached a maximum at 2 days and was partly reversible. These results suggest that retinoic acid may increase NIH/3T3 cell adhesion through an effect on laminin receptors. Other mouse fibroblast lines, 3T3-Swiss, 3T6-Swiss, Balb/3T3, and Balb/3T12-3 (spontaneously transformed Balb/3T3), responded to retinoic acid treatment in a manner similar to that of NIH/3T3 cells. However, the virus-transformed Balb/3T3 lines, SV-T2 and M-MSV, showed significant attachment to laminin substrates without retinoic acid treatment, and retinoic acid did not affect or slightly decreased the cell attachment to laminin substrates.  相似文献   

18.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

19.
The formation of extraembryonic endoderm is one of the earliest steps in the differentiation of pluripotent cells of the inner cell mass during the early stages of embryonic development. The primitive endoderm cells and the derived parietal and visceral endoderm cells gain the capacity to produce collagen IV and laminin. The deposition of these components results in the formation of basement membrane and epithelium of the endoderm, with polarized cells covering the inner surface of the blastocoels. We used retinoic acid-induced endoderm differentiation of stem cell-like F9 embryonic carcinoma cells to study the role of the Ras pathway and its regulation in the formation of the visceral endoderm. Upon endoderm differentiation of F9 cells induced by retinoic acid, c-Fos expression, the downstream target of the Ras pathway, is suppressed by uncoupling Elk-1 phosphorylation/activation to MAPK activity. However, attachment to matrix gel greatly enhances the activation of MAPK in endoderm cells but not in undifferentiated F9 cells. Enhanced MAPK activation as a result of contact with basement membrane is able to compensate for reduced Elk-1 phosphorylation and c-Fos expression. We conclude that endoderm differentiation renders the activation of the Ras pathway basement membrane dependent, contributing to the epithelial organization of the visceral endoderm.  相似文献   

20.
F9 embryonal carcinoma cells treated with 5 X 10(-8) M retinoic acid and cultured in suspension for 8 days form aggregates consisting of an outer epithelial layer of alpha-fetoprotein-producing visceral endoderm cells. We have previously shown (Grover, A., Oshima, R. G., and Adamson, E. D. (1983) J. Cell Biol. 96, 1690-1696) that the differentiation of F9 cells to visceral endoderm is accompanied by the activation of several genes, and increased laminin synthesis is one of the earliest events. Here we analyze in detail the syntheses and secretion of fibronectin, type IV collagen, and laminin during the 8-day process. Employing immunoprecipitation and enzyme-linked immunosorbent assay, we show that the levels of all three components change with different patterns. Unstimulated F9 cells synthesize and secrete relatively high levels of fibronectin and low levels of type IV collagen. Fibronectin synthesis and secretion decreases to 10% of its original level whereas type IV collagen synthesis rises approximately 3-fold during the differentiation process. Laminin synthesis also rises at least 2-fold, and the proportions of its subunits change as the syntheses of B1 and A accelerate starting on day 2. However, unlike fibronectin and type IV collagen, laminin is largely accumulated in the aggregates. The data suggest that fibronectin has a role in aggregation whereas laminin is important in the differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号