首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To gain further insight into the molecular architecture, assembly, and maintenance of the sarcomere, we have carried out a molecular analysis of the UNC-96 protein in the muscle of Caenorhabditis elegans. By polarized light microscopy of body wall muscle, unc-96 mutants display reduced myofibrillar organization and characteristic birefringent "needles." By immunofluorescent staining of known myofibril components, unc-96 mutants show major defects in the organization of M-lines and in the localization of a major thick filament component, paramyosin. In unc-96 mutants, the birefringent needles, which contain both UNC-98 and paramyosin, can be suppressed by starvation or by exposure to reduced temperature. UNC-96 is a novel approximately 47-kDa polypeptide that has no recognizable domains. Antibodies generated to UNC-96 localize the protein to the M-line, a region of the sarcomere in which thick filaments are cross-linked. By genetic and biochemical criteria, UNC-96 interacts with UNC-98, a previously described component of M-lines, and paramyosin. Additionally, UNC-96 copurifies with native thick filaments. A model is presented in which UNC-96 is required in adult muscle to promote thick filament assembly and/or maintenance.  相似文献   

2.
The Caenorhabditis elegans unc-60 gene encodes two functionally distinct isoforms of ADF/cofilin that are implicated in myofibril assembly. Here, we show that one of the gene products, UNC-60B, is specifically required for proper assembly of actin into myofibrils. We found that all homozygous viable unc-60 mutations resided in the unc-60B coding region, indicating that UNC-60B is responsible for the Unc-60 phenotype. Wild-type UNC-60B had F-actin binding, partial actin depolymerizing, and weak F-actin severing activities in vitro. However, mutations in UNC-60B caused various alterations in these activities. Three missense mutations resulted in weaker F-actin binding and actin depolymerizing activities and complete loss of severing activity. The r398 mutation truncated three residues from the COOH terminus and resulted in the loss of severing activity and greater actin depolymerizing activity. The s1307 mutation in a putative actin-binding helix caused greater activity in actin-depolymerizing and severing. Using a specific antibody for UNC-60B, we found varying protein levels of UNC-60B in mutant animals, and that UNC-60B was expressed in embryonic muscles. Regardless of these various molecular phenotypes, actin was not properly assembled into embryonic myofibrils in all unc-60 mutants to similar extents. We conclude that precise control of actin filament dynamics by UNC-60B is required for proper integration of actin into myofibrils.  相似文献   

3.
Assembly and maintenance of myofibrils require dynamic regulation of the actin cytoskeleton. In Caenorhabditis elegans, UNC-60B, a muscle-specific actin depolymerizing factor (ADF)/cofilin isoform, is required for proper actin filament assembly in body wall muscle (Ono, S., D.L. Baillie, and G.M. Benian. 1999. J. Cell Biol. 145:491--502). Here, I show that UNC-78 is a homologue of actin-interacting protein 1 (AIP1) and functions as a novel regulator of actin organization in myofibrils. In unc-78 mutants, the striated organization of actin filaments is disrupted, and large actin aggregates are formed in the body wall muscle cells, resulting in defects in their motility. Point mutations in unc-78 alleles change conserved residues within different WD repeats of the UNC-78 protein and cause less severe phenotypes than a deletion allele, suggesting that these mutations partially impair the function of UNC-78. UNC-60B is normally localized in the diffuse cytoplasm and to the myofibrils in wild type but mislocalized to the actin aggregates in unc-78 mutants. Similar Unc-78 phenotypes are observed in both embryonic and adult muscles. Thus, AIP1 is an important regulator of actin filament organization and localization of ADF/cofilin during development of myofibrils.  相似文献   

4.
The Caenorhabditis elegans unc-45 locus has been proposed to encode a protein machine for myosin assembly. The UNC-45 protein is predicted to contain an NH2-terminal domain with three tetratricopeptide repeat motifs, a unique central region, and a COOH-terminal domain homologous to CRO1 and She4p. CRO1 and She4p are fungal proteins required for the segregation of other molecules in budding, endocytosis, and septation. Three mutations that lead to temperature-sensitive (ts) alleles have been localized to conserved residues within the CRO1/She4p-like domain, and two lethal alleles were found to result from stop codon mutations in the central region that would prevent translation of the COOH-terminal domain. Electron microscopy shows that thick filament accumulation in vivo is decreased by ∼50% in the CB286 ts mutant grown at the restrictive temperature. The thick filaments that assemble have abnormal structure. Immunofluorescence and immunoelectron microscopy show that myosins A and B are scrambled, in contrast to their assembly into distinct regions at the permissive temperature and in wild type. This abnormal structure correlates with the high degree of instability of the filaments in vitro as reflected by their extremely low yields and shortened lengths upon isolation. These results implicate the UNC-45 CRO1/She4p-like region in the assembly of myosin isoforms in C. elegans and suggest a possible common mechanism for the function of this UCS (UNC-45/CRO1/She4p) protein family.  相似文献   

5.
Mutations in unc-96 or -98 cause reduced motility and a characteristic defect in muscle structure: by polarized light microscopy birefringent needles are found at the ends of muscle cells. Anti-paramyosin stains the needles in unc-96 and -98 mutant muscle. However there is no difference in the overall level of paramyosin in wild-type, unc-96, and -98 animals. Anti-UNC-98 and anti-paramyosin colocalize in the paramyosin accumulations of missense alleles of unc-15 (encodes paramyosin). Anti-UNC-96 and anti-UNC-98 have diffuse localization within muscles of unc-15 null mutants. By immunoblot, in the absence of paramyosin, UNC-98 is diminished, whereas in paramyosin missense mutants, UNC-98 is increased. unc-98 and -15 or unc-96 and -15 interact genetically either as double heterozygotes or as double homozygotes. By yeast two-hybrid assay and ELISAs using purified proteins, UNC-98 interacts with paramyosin residues 31-693, whereas UNC-96 interacts with a separate region of paramyosin, residues 699-798. The importance of surface charge of this 99 residue region for UNC-96 binding was shown. Paramyosin lacking the C-terminal UNC-96 binding region fails to localize throughout A-bands. We propose a model in which UNC-98 and -96 may act as chaperones to promote the incorporation of paramyosin into thick filaments.  相似文献   

6.
7.
Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1-null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.  相似文献   

8.
Caenorhabditis elegans body wall muscle contains two isoforms of myosin heavy chain, MHC A and MHC B, that differ in their ability to initiate thick filament assembly. Whereas mutant animals that lack the major isoform, MHC B, have fewer thick filaments, mutant animals that lack the minor isoform, MHC A, contain no normal thick filaments. MHC A, but not MHC B, is present at the center of the bipolar thick filament where initiation of assembly is thought to occur (Miller, D.M.,I. Ortiz, G.C. Berliner, and H.F. Epstein. 1983. Cell. 34:477-490). We mapped the sequences that confer A-specific function by constructing chimeric myosins and testing them in vivo. We have identified two distinct regions of the MHC A rod that are sufficient in chimeric myosins for filament initiation function. Within these regions, MHC A displays a more hydrophobic rod surface, making it more similar to paramyosin, which forms the thick filament core. We propose that these regions play an important role in filament initiation, perhaps mediating close contacts between MHC A and paramyosin in an antiparallel arrangement at the filament center. Furthermore, our analysis revealed that all striated muscle myosins show a characteristic variation in surface hydrophobicity along the length of the rod that may play an important role in driving assembly and determining the stagger at which dimers associate.  相似文献   

9.
Myosin rod protein (MRP) is a naturally occurring 155 kDa protein in Drosophila that includes the myosin heavy chain (MHC) rod domain, but contains a unique 77 amino acid residue N-terminal region that replaces the motor and light chain-binding domains of S1. MRP is a major component of myofilaments in certain direct flight muscles (DFMs) and it is present in other somatic, cardiac and visceral muscles in adults, larvae and embryos, where it is coexpressed and polymerized into thick filaments along with MHC. DFM49 has a relatively high content of MRP, and is characterized by an unusually disordered myofibrillar ultrastructure, which has been attributed to lack of cross-bridges in the filament regions containing MRP. Here, we characterize in detail the structural organization of myofibrils in adult and embryonic Drosophila muscles containing various MRP/MHC ratios and in embryos carrying a null mutation for the single MHC gene. We examined MRP in embryonic body wall and intestinal muscles as well as in DFMs with consistent findings. In DFMs numbers 49, 53 and 55, MRP is expressed at a high level relative to MHC and is associated with disorder in the positioning of thin filaments relative to thick filaments in the areas of overlap. Embryos that express MRP in the absence of MHC form thick filaments that participate in the assembly of sarcomeres, suggesting that myofibrillogenesis does not depend on strong myosin-actin interactions. Further, although thick filaments are not well ordered, the relative positioning of thin filaments is fairly regular in MRP-only containing sarcomeres, confirming the hypothesis that the observed disorder in MRP/MHC containing wild-type muscles is due to the combined action between the functional behavior of MRP and MHC myosin heads. Our findings support the conclusion that MRP has an active function to modulate the contractile activity of muscles in which it is expressed.  相似文献   

10.
The organization of the motor protein myosin into motile cellular structures requires precise temporal and spatial control. Caenorhabditis elegans UNC-45 facilitates this by functioning both as a chaperone and as a Hsp90 cochaperone for myosin during thick filament assembly. Consequently, mutations in C. elegans unc-45 result in paralyzed animals with severe myofibril disorganization in striated body wall muscles. Here, we report a new E3/E4 complex, formed by CHN-1, the C. elegans ortholog of CHIP (carboxyl terminus of Hsc70-interacting protein), and UFD-2, an enzyme known to have ubiquitin conjugating E4 activity in yeast, as necessary and sufficient to multiubiquitylate UNC-45 in vitro. The phenotype of unc-45 temperature-sensitive animals is partially suppressed by chn-1 loss of function, while UNC-45 overexpression in worms deficient for chn-1 results in severely disorganized muscle cells. These results identify CHN-1 and UFD-2 as a functional E3/E4 complex and UNC-45 as its physiologically relevant substrate.  相似文献   

11.
unc-94 is one of about 40 genes in Caenorhabditis elegans that, when mutant, displays an abnormal muscle phenotype. Two mutant alleles of unc-94, su177 and sf20, show reduced motility and brood size and disorganization of muscle structure. In unc-94 mutants, immunofluorescence microscopy shows that a number of known sarcomeric proteins are abnormal, but the most dramatic effect is in the localization of F-actin, with some abnormally accumulated near muscle cell-to-cell boundaries. Electron microscopy shows that unc-94(sf20) mutants have large accumulations of thin filaments near the boundaries of adjacent muscle cells. Multiple lines of evidence prove that unc-94 encodes a tropomodulin, a conserved protein known from other systems to bind to both actin and tropomyosin at the pointed ends of actin thin filaments. su177 is a splice site mutation in intron 1, which is specific to one of the two unc-94 isoforms, isoform a; sf20 has a stop codon in exon 5, which is shared by both isoform a and isoform b. The use of promoter-green fluorescent protein constructs in transgenic animals revealed that unc-94a is expressed in body wall, vulval and uterine muscles, whereas unc-94b is expressed in pharyngeal, anal depressor, vulval and uterine muscles and in spermatheca and intestinal epithelial cells. By Western blot, anti-UNC-94 antibodies detect polypeptides of expected size from wild type, wild-type-sized proteins of reduced abundance from unc-94(su177), and no detectable unc-94 products from unc-94(sf20). Using these same antibodies, UNC-94 localizes as two closely spaced parallel lines flanking the M-lines, consistent with localization to the pointed ends of thin filaments. In addition, UNC-94 is localized near muscle cell-to-cell boundaries.  相似文献   

12.
Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45-related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.  相似文献   

13.
The established observations and unresolved questions in the assembly of myosin are outlined in this article. Much of the background information has been obtained in classical experiments using the myosin and thick filaments from vertebrate skeletal muscle. Current research is concerned with problems of myosin assembly and structure in smooth muscle, a broad spectrum of invertebrate muscles, and eukaryotic cells in general. Many of the general questions concerning myosin assembly have been addressed by a combination of genetic, molecular, and structural approaches in the nematode Caenorhabditis elegans. Detailed analysis of multiple myosin isoforms has been a prominent aspect of the nematode work. The molecular cloning and determination of the complete sequences of the genes encoding the four isoforms of myosin heavy chain and of the myosin-associated protein paramyosin have been a major landmark. The sequences have permitted a theoretical analysis of myosin rod structure and the interactions of myosin in thick filaments. The development of specific monoclonal antibodies to the individual myosins has led to the delineation of the different locations of the myosins and to their special roles in thick filament structure and assembly. In nematode body-wall muscles, two isoforms, myosins A and B, are located in different regions of each thick filament. Myosin A is located in the central biopolar zones, whereas myosin B is restricted to the flanking polar regions. This specific localization directly implies differential behavior of the two myosins during assembly. Genetic and structural experiments demonstrate that paramyosin and the levels of expression of the two forms are required for the differential assembly. Additional genetic experiments indicate that several other gene products are involved in the assembly of myosin. Structural studies of mutants have uncovered two new structures. A core structure separate from myosin and paramyosin appears to be an integral part of thick filaments. Multifilament assemblages exhibit multiple nascent thick filament-like structures extending from central paramyosin regions. Dominant mutants of myosin that disrupt thick filament assembly are located in the ATP and actin binding sites of the heavy chain. A model for a cycle of reactions in the assembly of myosin into thick filaments is presented. Specific reactions of the two myosin isoforms, paramyosin, and core proteins with multifilament assemblages as possible intermediates in assembly are proposed.  相似文献   

14.
The assembly of myosin into higher order structures is dependent upon accessory factors that are often tissue-specific. UNC-45 acts as such a molecular chaperone for myosin in the nematode Caenorhabditis elegans, in both muscle and non-muscle contexts. Although vertebrates contain homologues of UNC-45, their requirement for muscle function has not been assayed. We identified a zebrafish gene, unc45b, similar to a mammalian unc-45 homologue, expressed exclusively in striated muscle tissue, including the somites, heart and craniofacial muscle. Morpholino-oligonucleotide-mediated knockdown of unc45b results in paralysis and cardiac dysfunction. This paralysis is correlated with a loss of myosin filaments in the sarcomeres of the trunk muscle. Morphants lack circulation, heart looping and display severe cardiac and yolk-sac edema and also demonstrate ventral displacement of several jaw cartilages. Overall, this confirms a role for unc45b in zebrafish motility consistent with a function in myosin thick filament assembly and stability and uncovers novel roles for this gene in the function and morphogenesis of the developing heart and jaw. These results suggest that Unc45b acts as a chaperone that aids in the folding of myosin isoforms required for skeletal, cranial and cardiac muscle contraction.  相似文献   

15.
16.
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.  相似文献   

17.
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.  相似文献   

18.
The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.  相似文献   

19.
20.
Myosin isoforms A and B are located at the surface of the central and polar regions, respectively, of thick filaments in body muscle cells of Caenorhabditis elegans, whereas paramyosin and a distinct core structure comprise the backbones of these filaments. Thick filaments and related structures were isolated from nematode mutants that have altered thick filament protein compositions. These mutant filaments and their complexes with specific antibodies were studied by electron microscopy to determine the distribution of the two myosins. The compartmentation of the two myosin isoforms in body wall muscle thick filaments depends not only upon the intrinsic properties of the myosins but their interactions with other components such as paramyosin and their relative quantities determined by synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号