首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The effect of oxidative stress induced by the oxidant pair ascorbate/Fe2+ on the activity of ionotropic glutamate receptors was studied in cultured chick retina cells. The release of [3H]GABA and the increase of the intracellular free Na+ concentration ([Na+]i), evoked by glutamate receptor agonists, were used as functional assays for the activity of the receptors. The results show that the maximal release of [3H]GABA evoked by kainate (KA; ~20% of the total) or AMPA (~11% of the total) was not different in control and peroxidized cells, whereas the EC50 values determined for peroxidized cells (33.6 ± 1.7 and 8.0 ± 2.0 µM for KA and AMPA, respectively) were significantly lower than those determined under control conditions (54.1 ± 6.6 and 13.0 ± 2.2 µM for KA and AMPA, respectively). The maximal release of [3H]GABA evoked by NMDA under K+ depolarization was significantly higher in peroxidized cells (7.5 ± 0.5% of the total) as compared with control cells (4.0 ± 0.2% of the total), and the effect of oxidative stress was significantly reduced by a phospholipase A2 inhibitor or by fatty acid-free bovine serum albumin. The change in the intracellular [Na+]i evoked by saturating concentrations of NMDA under depolarizing conditions was significantly higher in peroxidized cells (8.9 ± 0.6 mM) than in control cells (5.9 ± 1.0 mM). KA, used at a subsaturating concentration (35 µM), evoked significantly greater increases of the [Na+]i in peroxidized cells (11.8 ± 1.7 mM) than in control cells (7.1 ± 0.8 mM). A saturating concentration (150 µM) of this agonist triggered similar increases of the [Na+]i in control and peroxidized cells. Accordingly, the maximal number of binding sites for (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) was increased after peroxidation, whereas the maximal number of binding sites for [3H]KA was not affected by oxidative stress. These data suggest that under oxidative stress the activity of the ionotropic glutamate receptors is increased, with the NMDA receptor being the most affected by peroxidation.  相似文献   

2.
3.
Abstract: The functional efficacies of inhibitors of l -glutamate uptake for altering second messenger formation in baby hamster kidney cells expressing subtypes mGluR1a, mGluR2, and mGluR4 of the metabotropic glutamate receptor family were examined. l -Serine-O-sulfate was an agonist at mGluR1a (EC50 = 70 µM), mGluR2 (EC50 = 25 µM), and mGluR4 (EC50 = 324 µM). l -Cysteine sulfinate, 1-aminocyclobutane-trans-1,3-dicarboxylate, l -cysteine, and dl -threo-3-methylaspartate stimulated phosphoinositide hydrolysis in mGluR1a cells with EC50 values of 43, 64, 463, and 488 µM, respectively, and displaced l -[3H]glutamate binding from membranes prepared from these cells with respective IC50 values of 48, 44, 79, and 139 µM. However, d -aspartate,l -trans-pyrrolidine-2,4-dicarboxylate, l -threo-3-hydroxyaspartate, and l -aspartate-β-hydroxamate stimulated phosphoinositide hydrolysis in mGluR1a cells (respective EC50 values of 73, 54, 57, and 430 µM) but did not displace l -[3H]glutamate binding. These compounds inhibited Na+-dependent l -glutamate uptake into baby hamster kidney cells with IC50 values similar to those for stimulation of phosphoinositide hydrolysis in mGluR1a cells. Phosphoinositide hydrolysis in mGluR1a cells, as stimulated by inhibitors of (or substrates for) this l -glutamate transporter, was significantly attenuated in the presence of l -glutamate decarboxylase (EC 4.1.1.15) or l -alanine aminotransferase (EC 2.6.1.2). Furthermore, incubation with 1 mMl -trans-pyrrolidine-2,4-dicarboxylate for 30 min increased the basal levels of free glutamate (1.5 ± 0.2 µM) in the assay buffer four- to fivefold as measured by HPLC analysis. Thus, heteroexchange with endogenous l -glutamate may lead to erroneous estimations of the functional efficacies at mGluR1a.  相似文献   

4.
Abstract: The effects of ethanol, glycine, and spermidine on the specific binding of [3H]MK-801 were characterized in Triton-treated membranes prepared from the hippocampus and cortex of ethanol-withdrawal seizure-prone (WSP) and -resistant (WSR) mice. Glycine, an allosteric agonist at the NMDA receptor-linked ion channel complex, caused an increase in specific [3H]MK-801 binding to hippocampal membrane preparations. There were no significant differences in EC50 values between the selected lines for the effect of glycine (WSP, 391.7 ± 48.4 nM; WSR, 313.4 ± 77 nM) in the presence of 10 µM NMDA or in the maximal response to the agonist (WSP, 1.75 ± 0.26 pmol/mg of protein; WSR, 1.67 ± 0.22 pmol/mg of protein). The EC50 values for the spermidine-induced increase in [3H]MK-801 binding in membranes from hippocampus in the absence (WSP, 11.7 ± 0.83 µM; WSR, 9.98 ± 1.29 µM) or in the presence of 10 µM glycine and 10 µM NMDA (WSP, 2.1 ± 0.35 µM; WSR, 2.37 ± 0.42 µM) also did not differ. Similar results were obtained in cortical membranes. Saturation isotherms indicated that there was no difference in the density of [3H]MK-801 binding sites, or in their affinity for the radioligand, between the mouse lines. In addition, administration of ethanol by inhalation (24 h) to WSP and WSR mice did not cause an increase in the density of [3H]MK-801 binding sites, and there was no difference in the density or affinity of binding sites between the mouse lines. Withdrawal from ethanol (6 h), which causes an increase in the severity of handling-induced convulsions in WSP mice, also did not alter the binding site density or affinity for radioligand. The results suggest that the characteristics of the NMDA receptor-linked ion channel complex in the tissue preparations described here do not differ in WSP and WSR mice. Thus, genetic differences in seizure susceptibility during ethanol withdrawal can be dissociated from the total density of hippocampal or cortex NMDA receptors under activating conditions.  相似文献   

5.
6.
Abstract: The l - and d -enantiomers of the sulphur-containing amino acids (SAAs)—homocysteate, homocysteine sulphinate, cysteate, cysteine sulphinate, and S-sulphocysteine—stimulated [3H]noradrenaline release from rat hippocampal slices in a concentration-dependent manner. The relative potencies of the l -isomers (EC50 values of 1.05–1.96 mM) were of similar order to that of glutamate (1.56 mM), which was 10-fold lower than that of NMDA (0.15 mM), whereas the d -isomers exhibited a wider range of potencies (0.75 to >5 mM). All stimulatory effects of the SAAs were significantly inhibited by the voltage-sensitive Na+ channel blocker tetrodotoxin (55–71%) and completely blocked by addition of Mg2+ or Co2+ to the incubation medium. All SAA-evoked responses were concentration-dependently antagonized by the selective NMDA receptor antagonist d -(?)-2-amino-5-phosphonopentanoic acid (IC50 values of 3.2–49.5 µM). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, at 100 µM inhibited the [3H]noradrenaline release induced by glutamate and NMDA (65 and 76%, respectively) and by all SAAs studied (65–85%), whereas 10 µM CNQX only inhibited the effects of S-sulpho-l -cysteine and l - and d -homocysteate (33, 32, and 44%, respectively). However, the more selective AMPA/kainic acid receptor antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (100 µM), which did not antagonize the [3H]noradrenaline release induced by glutamate and NMDA, reduced only the S-sulpho-l -cysteine-evoked response (25%). Thus, the stimulation of Ca2+-dependent[3H]noradrenaline release from hippocampal slices elicited by the majority of the SAAs appears to be mediated by the NMDA receptor.  相似文献   

7.
Abstract: In this study, we have investigated the effect of mivazerol, [3-(1H-imidazol-4-yl)methyl-1]-2-hydroxy-benzamide hydrochloride, a new α2-agonist lacking hypotensive properties and a potential anti-ischemic drug, on the evoked release of norepinephrine, aspartate, and glutamate in tissue preparations from hippocampus, spinal cord T1–T5 section, rostrolateral ventricular medulla, and nucleus tractus solitarii of the brainstem of rat. A simple and efficient in vitro procedure to study pharmacologically the release of norepinephrine and glutamate is described. Tissues were chopped into (0.3 × 0.2 × 0.2 mm3) sections and the resulting minces were used for this study. Exposure to KCl (10–75 mM) for 5 min served as a stimulus for the release response. One, S (for aspartate and for glutamate release), or two such stimuli, S1 and S2 (for norepinephrine release) were conducted. The release of norepinephrine (+150% above baseline) was inhibited in a dose-dependent manner by mivazerol in hippocampus (IC50 = 1.5 × 10?8M), spinal cord (IC50 = 5 × 10?8M), rostrolateral ventricular medulla (IC50 = 10?7M), and nucleus tractus solitarii (IC50 = 7.5 × 10?8M), and by clonidine in hippocampus (IC50 = 5 × 10?8M), spinal cord (IC50 = 4.5 × 10?8M), rostrolateral ventricular medulla (IC50 = 2.5 × 10?7M), and nucleus tractus solitarii (IC50 = 10?7M). This effect was counteracted by the selective α2-antagonists yohimbine and rauwolscine. A significant glutamate and aspartate release response was also induced by KCl (35 mmol/L) in hippocampus (+250 and +135%, respectively) and spinal cord (+120 and +55%, respectively), in vitro. However, neither mivazerol nor clonidine, at doses up to 10 µM, had any significant effect on KCl-induced glutamate release in spinal cord, whereas mivazerol blocked completely the release of both amino acids in hippocampus and only the release of aspartate in spinal cord. On the other hand, clonidine (1 µM) was only effective in reducing by 40% the release of aspartate in hippocampus. These data indicate that (1) inhibition of KCl-induced norepinephrine release by mivazerol is mediated by its action on α2-adrenergic receptors; (2) at concentrations selective for α2-adrenergic receptors, only mivazerol was effective in blocking the KCl-induced glutamate release in hippocampal tissue; and (3) at the same concentrations, both mivazerol and clonidine were unable to inhibit glutamate release in the spinal cord. These data suggest that prevention of hyperadrenergic activity by mivazerol in perioperative patients may be mediated through its effect on the release of norepinephrine and/or the release of glutamate and aspartate in regions of the CNS that are involved in the control of cardiovascular homeostasis.  相似文献   

8.
Abstract: The existence of both nitric oxide synthase (NOS) immunoreactive interneurons and amino acid neurotransmitter-mediated nitric oxide (NO) release in the striatum suggests a role for NO in modulating striatal function. To explore the potential interaction between NO and dopaminergic neurotransmission, the NO-releasing agent (±)-S-nitroso-N-acetylpenicillamine (SNAP) was administered locally into the anterior medial striatum of chloral hydrate-anesthetized rats. SNAP, at 0.5, 1, and 2 mM concentrations, elevated striatal extracellular (EC) dopamine (DA) to 200 ± 42, 472 ± 120, and 2,084 ± 496%, respectively, above baseline levels. Perfusion with (±)-penicillamine (PEN, 1 mM), the non-NO-containing carrier component of SNAP, was ineffective, indicating that PEN is not responsible for SNAP-mediated DA release. Additional microdialysis experiments suggest SNAP-mediated DA release is not due to NO-induced neurotoxicity or blockade of the DA transporter. The DA-releasing effect of SNAP was attenuated under calcium-free conditions and abolished in rats pretreated with reserpine (5 mg/kg), implicating a calcium-sensitive vesicular-dependent release process. To determine the mechanism of SNAP-mediated DA release, the guanylyl cyclase (GC) inhibitor LY 83583 (100 µM) was administered 100 min before and during the SNAP pulse. LY 83583 elevated EC DA levels approximately fivefold and potentiated the DA-releasing effect of SNAP to 2,598 ± 551% above basal DA levels. Similar pretreatments with both the noncompetitive N-methyl-d -aspartate (NMDA) antagonist MK-801 (10 µM) and the competitive NMDA-receptor antagonist (±)-3-(carboxypiperazin-4-yl)propyl-1-phosphonic acid [(±)-CPP, 100 µM] blocked SNAP-mediated DA release. SNAP-mediated DA release was also significantly blunted by pretreatment and coperfusion with MgSO4 (10 mM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 µM) but not (+)-2-amino-3-phosphonopropionic acid (AP-3, 10 µM). These results suggest that NO releases DA via a calcium-sensitive vesicular-dependent process that is independent of GC activation. In addition, NMDA and kainate/(±)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated mechanisms are implicated in NO-induced DA release.  相似文献   

9.
Abstract: High concentrations of Zn2+ are found in presynaptic terminals of excitatory neurons in the CNS. Zn2+ can be released during synaptic activity and modulate postsynaptic receptors, but little is known about the possibility that Zn2+ may enter postsynaptic cells and produce dynamic changes in the intracellular Zn2+ concentration ([Zn2+]i). We used fura-2 and magfura-2 to detect the consequences of Zn2+ influx in cultured neurons under conditions that restrict changes in intracellular Ca2+ and Mg2+ concentrations. The resulting ratio changes for both dyes were reversed completely by the Zn2+ chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine, indicating that these dyes are measuring changes in [Zn2+]i. We found that fura-2 was useful in measuring small increases in [Zn2+]i associated with exposure to Zn2+ alone that may be mediated by a Na+/Ca2+ exchanger. Magfura-2, which has a lower affinity for Zn2+, was more useful in measuring larger agonist-stimulated increases in [Zn2+]i. The coapplication of 300 µM Zn2+ and 100 µM glutamate/10 µM glycine resulted in a [Zn2+]i increase that was ~40–100 nM in magnitude and could be inhibited by the NMDA receptor antagonist, MK-801 (30 µM), or extracellular Na+. This suggests that Zn2+ influx can occur through at least two different pathways, leading to varying increases in [Zn2+]i. These findings demonstrate the feasibility of measuring changes in [Zn2+]i in neurons.  相似文献   

10.
Abstract: Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1–1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 µM thapsigargin (Tg), 10 µM 2,5-di-tert-butylhydroquinone, 1 µM ionomycin, or 100 µM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 µM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 µM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 µM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

11.
Abstract: Previous results showed that within 30 s after glutamate stimulation of cultured rat hippocampal pyramidal neurons there occurred an elevation of Ca2+ and diacylglycerol, and the phosphorylation of three acidic protein kinase C substrates, i.e., an 87-kDa protein known as myristoylated alanine-rich C kinase substrate and a 120-and a 48-kDa protein. In addition, it was suggested that a metabotropic-type glutamate receptor might be responsible for the phosphorylation observed. This work examines the ability of metabotropic and ionotropic glutamate receptor agonists to quickly activate phospholipases in 1.26 mM versus 50 nM extracellular Ca2+ by measuring the generation of inositol phosphates. NMDA, quisqualate, and trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid did not stimulate the generation of inositol phosphates in the presence of normal or low extracellular Ca2+ in pyramidal neurons. Kainate stimulated the production of inositol phosphates in the presence of 1.26 mM extracellular Ca2+ but not in 50 nM extracellular Ca2+. Other than glutamate, only ibotenate was able to stimulate the generation of inositol phosphates in both normal and low extracellular Ca2+. The maximal response to ibotenate was approximately equal to that of glutamate, when pyramidal neurons were stimulated in 50 nM extracellular Ca2+. The generation of inositol phosphates by glutamate and ibotenate could be partially blocked (50–60% reduction) by pretreatment of neurons with pertussis toxin (250 ng/ml),-suggesting that a GTP-binding protein might be involved. In addition, ibotenate stimulated the immediate phosphorylation of the same three protein kinase C substrates as glutamate. The NMDA receptor blocker MK-801 had no effect on this phosphorylation. These results suggest that the stimulation of phosphorylation in pyramidal neurons by glutamate occurs predominantly through the activation of an ibotenate-selective metabotropic glutamate receptor.  相似文献   

12.
Abstract: The effect of ionotropic excitatory amino acids and potassium on the formation of inositol phosphates elicited by the metabotropic glutamate receptor agonist (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD) was studied in mouse cerebellar granule cells. In Mg2+-containing buffers, NMDA (50–100 µM), α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA; 10–1,000 µM), and high potassium (10–30 mM) enhanced synergistically the response to a maximally effective concentration of 500 µMtrans-ACPD. Potentiation of the trans-ACPD response was blocked by higher concentrations of NMDA (>500 µM) and potassium (>35 mM) but not by AMPA (up to 1 mM). The potentiation by NMDA of the trans-ACPD-stimulated phosphoinositide hydrolysis was blocked by d,l -2-amino-5-phosphonopentanoic acid (APV), a competitive NMDA-receptor antagonist. Under Mg2+-free conditions, the accumulation of inositol phosphates in the presence of trans-ACPD alone was equal to that attained by trans-ACPD in Mg2+-containing buffers when costimulated with maximally enhancing concentrations of NMDA (50 µM). trans-ACPD potentiated synergistically the NMDA-evoked increases in cytosolic free-Ca2+ levels in Mg2+-containing but not in Mg2+-free solutions, and moreover did not enhance the AMPA-evoked increases in cytosolic free-Ca2+ levels. The calcium ionophore A23187 caused a dose-dependent increase in inositol phosphate accumulation but did not enhance the response stimulated by trans-ACPD alone. These results demonstrate the existence of cross talk between metabotropic and ionotropic glutamate receptors in cerebellar granule cells. The exact mechanism remains unclear but appears to involve interplay of G protein-coupled phospholipase C activation and regulated elevation of cytosolic free-Ca2+ levels. This study may provide a framework for future investigations at the cellular and molecular level that clarify the functional relevance and molecular mechanisms that are described.  相似文献   

13.
Abstract: Muscarinic receptor in human neuroblastoma SK-N-BE(2)C cells was identified and characterized. Treatment of the cells with carbachol evoked the generation of inositol 1,4,5-trisphosphate (IP3) with a peak level reached at 1 min after stimulation. Carbachol increased intracellular Ca2+ ([Ca2+]i) with an EC50 value of 35 µM. In addition, carbachol produced a 1.3–3-fold increase in the cyclic AMP (cAMP) level compared with untreated control and elevated synergistically the cAMP level in the treatment with prostaglandin E2 (PGE2). The M3 antagonist p-fluorohexahydrosiladifenidol (IC50 = 0.5–0.8 µM) inhibited the increases in [Ca2+]i, IP3, and cAMP more effectively than the M1 antagonist pirenzepine (IC50 = 5–9 µM) and the M2 antagonist methoctramine (IC50 = 20–30 µM). The involvements of [Ca2+]i elevation and protein kinase C activation induced by phospholipase C activation were tested in the carbachol-induced cAMP production. The calcium chelator BAPTA/AM (75 µM) inhibited significantly the synergistic effects of carbachol and PGE2 on the production of cAMP, whereas the Ca2+ ionophore ionomycin (1 µM) clearly enhanced PGE2-induced cAMP production. However, phorbol 12-myristate 13-acetate did not enhance PGE2-stimulated cAMP production. These data suggest that phospholipase C-linked M3 receptors are present and that stimulation of the receptors activates adenylyl cyclase, at least in part, by the Ca2+-dependent system in the neuronal cells.  相似文献   

14.
Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of O2 ·−, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and O2 ·− anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of H2O2 in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of O2 ·− by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in O2 ·− generation through NADPH oxidase and subsequent root growth is discussed.  相似文献   

15.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

16.
Hydrogen peroxide (H2O2) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross‐tolerance to various stressors. SA‐stimulated pre‐adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole‐plant level, SA‐induced massive H2O2 accumulation only at high concentrations (10?3–10?2M), which later caused the death of plants. The excess accumulation of H2O2 as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre‐treatments. In the root tips, 10?3–10?2M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre‐adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt‐treated samples. This suggests that, the cross‐talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1‐aminocyclopropane‐1‐carboxylic acid, the compounds accumulating in pre‐treated plants, enhanced the diphenylene iodonium‐sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.  相似文献   

17.
Abstract: The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an “early” Na+/Cl?-dependent component observed within minutes of glutamate exposure, and a “delayed” Ca2+-dependent component (ED50~50 µM) that coincided with progressive degeneration of granule cells 4–24 h after a brief (5–15 min) exposure to 100 µM glutamate. Quantitative analysis of cell viability and morphological observations identify a “window” in which TMB-8 (at >100 µM) protects granule cells from the Ca2+-dependent, but not the Na+/Cl?-dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

18.
Abstract: The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-d -glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 µM Co2+/Cd2+ or by 1 µMω-conotoxin MVIIC/1 µMω-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 µM mCPBG was substantially reduced by 10 µM Co2+/Cd2+ and was completely blocked by 1 µM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

19.
Abstract: The voltage-dependent calcium channels present in mammalian and chicken brain synaptosomes were characterized pharmacologically using specific blockers of L-type channels (1,4-dihydropyridines), N-type channels (ω-conotoxin GVIA), and P-type channels [funnel web toxin (FTX) and ω-agatoxin IVA]. K+-induced Ca2+ uptake by chicken synaptosomes was blocked by ω-conotoxin GVIA (IC50 = 250 nM). This toxin at 5 µM did not block Ca2+ entry into rat frontal cortex synaptosomes. FTX and ω-agatoxin IVA blocked Ca2+ uptake by rat synaptosomes (IC50 = 0.17 µl/ml and 40 nM, respectively). Likewise, in chicken synaptosomes, FTX and ω-agatoxin IVA affected Ca2+ uptake. FTX (3 µl/ml) exerted a maximal inhibition of 40% with an IC50 similar to the one obtained in rat preparations, whereas with ω-agatoxin IVA saturation was not reached even at 5 µM. In chicken preparations, the combined effect of saturating concentrations of FTX (1 µl/ml) and different concentrations of ω-conotoxin GVIA showed no additive effects. However, the effect of saturating concentrations of FTX and ω-conotoxin GVIA was never greater than the one observed with ω-conotoxin GVIA. We also found that 60% of the Ca2+ uptake by rat and chicken synaptosomes was inhibited by ω-conotoxin MVIID (1 µM), a toxin that has a high index of discrimination against N-type channels. Conversely, nitrendipine (10 µM) had no significant effect on Ca2+ uptake in either the rat or the chicken. In conclusion, Ca2+ uptake by rat synaptosomes is potently inhibited by different P-type Ca2+ channel blockers, thus indicating that P-type channels are predominant in this preparation. In contrast, Ca2+ uptake by chicken synaptosomes is sensitive to ω-conotoxin GVIA, FTX, ω-agatoxin IVA, and ω-conotoxin MVIID. This suggests that a channel subtype with a mixed pharmacology is present in chicken synaptosomes.  相似文献   

20.
Abstract: δ-Opioids mobilize Ca2+ from intracellular stores in undifferentiated NG108-15 cells, but the mechanism involved remains unclear. Therefore, we examined the effect of [d -Pen2,5]enkephalin on inositol 1,4,5-trisphosphate formation in these cells. [d -Pen2,5]enkephalin caused a dose-dependent (EC50 = 3.1 nM) increase in inositol 1,4,5-trisphosphate formation (measured using a specific radioreceptor mass assay), which peaked (25.7 ± 1.2 pmol/mg of protein with 1 µM, n = 9) at 30 s and returned to basal levels (10.6 ± 0.9 pmol/mg of protein, n = 9) within 4–5 min. This response was fully naloxone (1 µM) reversible and pertussis toxin (100 ng/ml for 24 h) sensitive. Preincubation with Ni2+ (2.5 mM) or nifedipine (1 µM) had no effect on the [d -Pen2,5]enkephalin (1 µM)-induced inositol 1,4,5-trisphosphate response, and K+ (80 mM) was unable to stimulate inositol 1,4,5-trisphosphate formation, indicating Ca2+ influx-induced activation of phospholipase C is not involved. Preincubation with the protein kinase C inhibitor Ro 31-8220 (1 µM) enhanced, whereas acute exposure to phorbol 12,13-dibutyrate (1 µM) abolished, the [d -Pen2,5]enkephalin (0.1 µM)-induced inositol 1,4,5-trisphosphate response, suggesting protein kinase C exerts an autoinhibitory feedback action. [d -Pen2,5]Enkephalin also dose-dependently (EC50 = 2.8 nM) increased the intracellular [Ca2+], which was maximal (24 nM increase with 1 µM, n = 5) at 30 s. This close temporal and dose-response relationship strongly suggests that δ-opioid receptor-mediated increases in intracellular [Ca2+] results from inositol 1,4,5-trisphosphate-induced Ca2+ release from intracellular stores, in undifferentiated NG108-15 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号