首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhalation of H2O2 is known to evoke bradypnea followed by tachypnea, which are reflexes resulting from stimulation by reactive oxygen species of vagal lung capsaicin-sensitive and myelinated afferents, respectively. This study investigated the pharmacological receptors and chemical mediators involved in triggering these responses. The ventilatory responses to 0.2% aerosolized H2O2 were studied before and after various pharmacological pretreatments in anesthetized rats. The initial bradypneic response was reduced by a transient receptor potential vanilloid 1 (TRPV1) receptor antagonist [capsazepine; change (Delta) = -53%] or a P2X purinoceptor antagonist [iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (PPADS); Delta = -47%] and was further reduced by capsazepine and iso-PPADS in combination (Delta = -78%). The initial bradypneic response was reduced by a cyclooxygenase inhibitor (indomethacin; Delta = -48%), ATP scavengers (apyrase and adenosine deaminase in combination; Delta = -50%), or capsazepine and indomethacin in combination (Delta = -47%), was further reduced by iso-PPADS and indomethacin in combination (Delta = -75%) or capsazepine and ATP scavengers in combination (Delta = -83%), but was not affected by a lipoxygenase inhibitor (nordihydroguaiaretic acid) or by any of the various vehicles. No pretreatment influenced delayed tachypnea. We concluded that 1) the initial bradypneic response to H2O2 results from activation of both TRPV1 and P2X receptors, possibly located at terminals of vagal lung capsaicin-sensitive afferent fibers; 2) the functioning of the TRPV1 and P2X receptors in triggering the initial bradypnea is, in part, mediated through the actions of cyclooxygenase metabolites and ATP, respectively; and 3) these mechanisms do not contribute to the H2O2-evoked delayed tachypnea.  相似文献   

2.
This study was carried out to determine the effect of 2-aminoethoxydiphenyl borate (2-APB), a common activator of transient receptor potential vanilloid (TRPV) type 1, 2, and 3 channels, on cardiorespiratory reflexes, pulmonary C fiber afferents, and isolated pulmonary capsaicin-sensitive neurons. In anesthetized, spontaneously breathing rats, intravenous bolus injection of 2-APB elicited the pulmonary chemoreflex responses, characterized by apnea, bradycardia, and hypotension. After perineural treatment of both cervical vagi with capsaicin to block the conduction of C fibers, 2-APB no longer evoked any of these reflex responses. In open-chest and artificially ventilated rats, 2-APB evoked an abrupt and intense discharge in vagal pulmonary C fibers in a dose-dependent manner. The stimulation of C fibers by 2-APB was attenuated but not abolished by capsazepine, a selective antagonist of the TRPV1, which completely blocked the response to capsaicin in these C fiber afferents. In isolated pulmonary capsaicin-sensitive neurons, 2-APB concentration dependently evoked an inward current that was partially inhibited by capsazepine but almost completely abolished by ruthenium red, an effective blocker of all TRPV channels. In conclusion, 2-APB evokes a consistent and distinct stimulatory effect on pulmonary C fibers in vivo and on isolated pulmonary capsaicin-sensitive neurons in vitro. These results establish the functional evidence demonstrating that TRPV1, V2, and V3 channels are expressed on these sensory neurons and their terminals.  相似文献   

3.
Laryngopharyngeal or gastroesophageal reflux is associated with laryngeal airway hyperreactivity (LAH), but neither the cause-effect relationship nor the underlying mechanism has been elucidated. Here we established a rat model with enhanced laryngeal reflex reactivity induced by laryngeal acid-pepsin insult and investigated the neural and hydroxyl radical (*OH) mechanisms involved. The laryngeal segments of 103 anesthetized rats were functionally isolated while animals breathed spontaneously. Ammonia vapor was delivered into the laryngeal segment to measure laryngeal reflex reactivity. We found that the laryngeal pH 5-pepsin treatment doubled the reflex apneic response to ammonia, whereas laryngeal pH 7.4-pepsin, pH 2-pepsin, and pH 5-denatured pepsin treatment had no effect. Histological examination revealed limited laryngeal inflammation and epithelial damage after pH 5-pepsin treatment and more severe damage after pH 2-pepsin treatment. In rats that had received the laryngeal pH 5-pepsin treatment, the apneic response to ammonia was abolished by either denervation or perineural capsaicin treatment (PCT; a procedure that selectively blocks capsaicin-sensitive afferent fibers) of the superior laryngeal nerves, but was unaffected by perineural sham treatment. LAH was prevented by laryngeal application of either dimethylthiourea (DMTU; a *OH scavenger) or deferoxamine (DEF; an antioxidant for *OH), but was unaltered by the DMTU vehicle or iron-saturated DEF (ineffective DEF). LAH reappeared after recovery from PCT, DMTU, or DEF treatment. We conclude that 1) laryngeal insult by pepsin at a weakly acidic pH, but not at acidic pH, can produce LAH; and 2) LAH is probably mediated through sensitization of the capsaicin-sensitive laryngeal afferent fibers by a *OH mechanism.  相似文献   

4.
Phagocytes generate superoxide (O2-.) and hydrogen peroxide (H2O2) and their interaction in an iron-catalyzed reaction to form hydroxyl radicals (OH.) (Haber-Weiss reaction) has been proposed. Deferoxamine chelates iron in a catalytically inactive form, and thus inhibition by deferoxamine has been employed as evidence for the involvement of OH. generated by the Haber-Weiss reaction. We report here that deferoxamine also inhibits reactions catalyzed by the peroxidases of phagocytes, i.e., myeloperoxidase (MPO) and eosinophil peroxidase (EPO). The reactions inhibited include iodination in the presence and absence of chloride and the oxidation of guaiacol. Iodination by MPO and H2O2 is stimulated by chloride due to the intermediate formation of hypochlorous acid (HOCl). Iodination by reagent HOCl also is inhibited by deferoxamine with the associated consumption of HOCl. Iron saturation of deferoxamine significantly decreased but did not abolish its inhibitory effect on iodination by MPO + H2O2 or HOCl. Deferoxamine did not affect the absorption spectrum of MPO, suggesting that it does not react with or remove the heme iron. The conversion of MPO to Compound II by H2O2 was not seen when H2O2 was added to MPO in the presence of deferoxamine, suggesting either that deferoxamine inhibited the formation of Compound II by acting as an electron donor for MPO Compound I or that deferoxamine immediately reduced the Compound II formed. Iodination by stimulated neutrophils also was inhibited by deferoxamine, suggesting an effect on peroxidase-catalyzed reactions in intact cells. Thus deferoxamine has multiple effects on the formation and activity of phagocyte-derived oxidants and therefore its inhibitory effect on oxidant-dependent damage needs to be interpreted with caution.  相似文献   

5.
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Earlier work in this laboratory has indicated that a cellular binding protein for 24,25(OH)2D3 is the enzyme catalase. Since binding resulted in decreased catalase activity and increased H2O2 production, studies were undertaken to determine if pro-oxidant conditions mimicked the inhibitory actions of 24,25(OH)2D3, and anti-oxidant conditions prevented the inhibitory actions of 24,25(OH)2D3. An antibody against the 24,25(OH)2D3 binding protein was found to neutralize the inhibitory effect of the steroid on 1,25(OH)2D3-mediated 32P uptake. Incubation of cells in the presence of 50 nM catalase was also found to alleviate inhibition. In another series of experiments, isolated intestinal epithelial cells were incubated as controls or with 1,25(OH)2D3, each in the presence of the catalase inhibitor 3-amino-1,2,4-triazole, or with 1,25(OH)2D3 alone. Cells exposed to hormone alone again showed an increased accumulation of 32P, while cells treated with catalase inhibitor and hormone had uptake levels that were indistinguishable from controls. We tested whether inactivation of protein kinase C (PKC), the signaling pathway for 32P uptake, occurred. Incubation of cells with phorbol-13-myristate (PMA) increased 32P uptake, while cells pretreated with 50 microM H2O2 prior to PMA did not exhibit increased uptake. Likewise, PMA significantly increased PKC activity while cells exposed to H2O2 prior to PMA did not. It is concluded that catalase has a central role in mediating rapid responses to steroid hormones.  相似文献   

6.
Oxygen-based free radical generation by ferrous ions and deferoxamine   总被引:3,自引:0,他引:3  
Deferoxamine accelerates the autooxidation of iron as measured by the rapid disappearance of Fe2+, the associated appearance of Fe3+, and the uptake of oxygen. Protons are released in the reaction. The formation of H2O2 was detected by the horseradish peroxidase-catalyzed oxidation of scopoletin, and the formation of hydroxyl radicals (OH.) was suggested by the formation of the OH. spin trap adduct (DMPO/OH). with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and the generation of the methyl radical adduct on the further addition of dimethyl sulfoxide. (DMPO/OH). adduct formation was inhibited by catalase but not by superoxide dismutase. The oxidant formed converted iodide to a trichloroacetic acid-precipitable form (iodination) and was bactericidal to logarithmic phase Escherichia coli. Both iodination and bactericidal activity was inhibited by catalase and by OH. scavengers, but not by superoxide dismutase. Iodination was optimal in 5 x 10(-4) M acetate buffer, pH 5.0, and when the Fe2+ and deferoxamine concentrations were equimolar at 10(-4) M. Fe2+ could not be replaced by Fe3+, Co2+, Zn2+, Ca2+, Mg2+, or Mn2+, or deferoxamine by EDTA, diethylenetriaminepentaacetic acid, or bathophenanthroline. These findings indicate that Fe2+ and deferoxamine can act as an oxygen radical generating system, which may contribute to its biological effects in vitro and in vivo.  相似文献   

7.
Electron spin resonance (ESR) and high-performance liquid chromatography (HPLC) techniques were utilized to investigate the effect of deferoxamine on free radical generation in the reaction of Cr(V) with H2O2 and organic hydroperoxides. ESR measurements demonstrated that deferoxamine can efficiently reduce the concentration of the Cr(V) intermediate as formed in the reduction of Cr(VI) by NAD(P)H or a flavoenzyme glutathione reductase/NADH. ESR spin trapping studies showed that deferoxamine also inhibits Cr(V)-mediated .OH radical generation from H2O2, as well as Cr(V)-mediated alkyl and alkoxy radical formation from t-butyl hydroperoxide and cumene hydroperoxide. HPLC measurements showed that .OH radicals generated by the Cr(VI)/flavoenzyme/NAD(P)H enzymatic system react with 2'-deoxyguanine to form 8-hydroxy-2'-deoxyguanine (8-OHdG), a DNA damage marker. Deferoxamine effectly inhibited the formation of 8-OHdG also.  相似文献   

8.
Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H2O2 doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m2) or H2O2 (7.5mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H2O2. Cell viability was also significantly better preserved in VST cells than VC cells after UV or H2O2 exposures. Following 3-AT treatment of VST cells, UVC radiation or H2O2 brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability.  相似文献   

9.
Loop diuretics have been shown to inhibit cough and other airway defensive reflexes via poorly defined mechanisms. We test the hypothesis that the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC1) is expressed by sensory nerve fibers innervating the airways where it plays an important role in regulating sensory neural activity. NKCC1 immunoreactivity was present on the cell membranes of most nodose and jugular ganglia neurons projecting to the trachea, and it was present on the peripheral terminals of putative mechanosensory nerve fibers in the airways. In urethane-anesthetized, spontaneously breathing guinea pigs, bolus application of citric acid (1 mM to 2 M) to an isolated and perfused segment of the tracheal mucosa evoked coughing and respiratory slowing. Removal of Cl- from the tracheal perfusate evoked spontaneous coughing and significantly potentiated cough and respiratory slowing reflexes evoked by citric acid. The NKCC1 inhibitor furosemide (10-100 microM) significantly reduced both the number of coughs evoked by citric acid and the degree of acid-evoked respiratory slowing (P < 0.05). Localized tracheal pretreatment with the Cl- channel inhibitors DIDS or niflumic acid (100 microM) also significantly reduced cough, whereas the GABAA receptor agonist muscimol potentiated acid-evoked responses. These data suggest that vagal sensory neurons may accumulate Cl- due to the expression of the furosemide-sensitive Cl- transporter, NKCC1. Efflux of intracellular Cl-, in part through calcium-activated Cl- channels, may play an important role in regulating airway afferent neuron activity.  相似文献   

10.
The mechanisms of histamine- and bradykinin-induced reflex bronchospasm were determined in anesthetized guinea pigs. With intravenous administration, both autacoids evoked dose-dependent increases in tracheal cholinergic tone. Vagotomy or atropine prevented these tracheal reflexes. When delivered as an aerosol, bradykinin readily increased tracheal cholinergic tone, whereas histamine aerosols were much less effective at inducing tracheal reflexes. Also, unlike histamine, bradykinin could evoke profound increases in cholinergic tone without directly or indirectly (e.g., prostanoid dependent) inducing measurable airway smooth muscle contraction resulting in bronchospasm. Neither autacoid required de novo synthesis of prostanoids or nitric oxide to induce reflex tracheal contractions. Combined cyclooxygenase inhibition and tachykinin-receptor antagonism did, however, abolish all effects of bradykinin in the airways, whereas responses to histamine were unaffected by these pretreatments. The data indicate that histamine and bradykinin initiate reflex bronchospasm by differential activation of vagal afferent nerve subtypes. We speculate that selective activation of either airway C fibers or airway rapid adapting receptors can initiate reflex bronchospasm.  相似文献   

11.
The effect of H(2)O(2) supplement on cell growth and β-carotene productions in recombinant Saccharomyces cerevisiae CFW-01 and CFW-01 ctt1 deficiency in cytosolic catalase were investigated in shaking flasks. The results showed that supplement of H(2)O(2) (0.5 and 1.0 mM) can significantly stimulate the β-carotene production. However, β-carotene levels of CFW-01 ctt1Δ under 0.5 and 1 mM H(2)O(2) were 16.7 and 36.7% lower than those of CFW-01, respectively. Although lacking cytosolic catalase, no significant differences in cell growth were observed between CFW-01 ctt1Δ and CFW-01 under the same level of H(2)O(2) stress. These results suggest that β-carotene can act as an antioxidant to protect the recombinant yeast from H(2)O(2) oxidative damage in the absence of cytosolic catalase. However, catalase still plays an important role in the production of β-carotene under H(2)O(2) stress. If catalase can not timely decompose H(2)O(2), the free radicals such as OH· derived from H(2)O(2) can result in decrease of β-carotene concentration. Therefore, in the production of β-carotene by H(2)O(2) stress, not only the level of oxidative stress, but also the activities of catalase in cells should be considered.  相似文献   

12.
Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.  相似文献   

13.
Yamazaki S  Morioka C  Itoh S 《Biochemistry》2004,43(36):11546-11553
Tyrosinase is a copper monooxygenase containing a coupled dinuclear copper active site (type-3 copper), which catalyzes oxygenation of phenols (phenolase activity) as well as dehydrogenation of catechols (catecholase activity) using O(2) as the oxidant. In this study, catalase activity (conversion of H(2)O(2) to (1/2)O(2) and H(2)O) and peroxygenase activity (H(2)O(2)-dependent oxygenation of substrates) of mushroom tyrosinase have been examined kinetically by using amperometric O(2) and H(2)O(2) sensors. The catalase activity has been examined by monitoring the initial rate of O(2) production from H(2)O(2) in the presence of a catalytic amount of tyrosinase in 0.1 M phosphate buffer (pH 7.0) at 25 degrees C under initially anaerobic conditions. It has been found that the catalase activity of mushroom tyrosinase is three-order of magnitude greater than that of mollusk hemocyanin. The higher catalase activity of tyrosinase could be attributed to easier accessibility of H(2)O(2) to the dinuclear copper site of tyrosinase. Mushroom tyrosinase has also been demonstrated for the first time to catalyze oxygenation reaction of phenols with H(2)O(2) (peroxygenase activity). The reaction has been investigated kinetically by monitoring the H(2)O(2) consumption rate in 0.5 M borate buffer (pH 7.0) under aerobic conditions. Similarity of the substituent effects of a series of p-substituted phenols in the peroxygenase reaction with H(2)O(2) to those in the phenolase reaction with O(2) as well as the absence of kinetic deuterium isotope effect with a perdeuterated substrate (p-Cl-C(6)D(4)OH vs p-Cl-C(6)H(4)OH) clearly demonstrated that the oxygenation mechanisms of phenols in both systems are the same, that is, the electrophilic aromatic substitution reaction by a (micro-eta(2):eta(2)-peroxo)dicopper(II) intermediate of oxy-tyrosinase.  相似文献   

14.
The role of H(2)O(2) and protein thiol oxidation in oxidative stress-induced epithelial paracellular permeability was investigated in Caco-2 cell monolayers. Treatment with a H(2)O(2) generating system (xanthine oxidase + xanthine) or H(2)O(2) (20 microM) increased the paracellular permeability. Xanthine oxidase-induced permeability was potentiated by superoxide dismutase and prevented by catalase. H(2)O(2)-induced permeability was prevented by ferrous sulfate and potentiated by deferoxamine and 1,10-phenanthroline. GSH, N-acetyl-L-cysteine, dithiothreitol, mercaptosuccinate, and diethylmaleate inhibited H(2)O(2)-induced permeability, but it was potentiated by 1,3-bis(2-chloroethyl)-1-nitrosourea. H(2)O(2) reduced cellular GSH and protein thiols and increased GSSG. H(2)O(2)-mediated reduction of GSH-to-GSSG ratio was prevented by ferrous sulfate, GSH, N-acetyl-L-cysteine, diethylmaleate, and mercaptosuccinate and potentiated by 1,10-phenanthroline and 1, 3-bis(2-chloroethyl)-1-nitrosourea. Incubation of soluble fraction of cells with GSSG reduced protein tyrosine phosphatase (PTPase) activity, which was prevented by coincubation with GSH. PTPase activity was also lower in H(2)O(2)-treated cells. This study indicates that H(2)O(2), but not O(2)(-). or.OH, increases paracellular permeability of Caco-2 cell monolayer by a mechanism that involves oxidation of GSH and inhibition of PTPases.  相似文献   

15.
The genotoxicity of asbestos fibers is generally mediated by reactive oxygen species (ROS) and by insufficient antioxidant protection. To further elucidate which radicals are involved in asbestos-mediated genotoxicity and to which extent, we have carried out experiments with the metal chelators deferoxamine (DEF) and phytic acid (PA), and with the radical scavengers superoxide dismutase (SOD), dimethylthiourea (DMTU) and the glutathione precursor Nacystelyn trade mark (NAL). We investigated the influence of these compounds on the potency of crocidolite, an amphibole asbestos fiber with a high iron content (27%), and chrysotile, a serpentine asbestos fiber with a low iron content (2%), to induce micronuclei (MN) in human mesothelial cells (HMC) after an exposure time of 24-72 h. Our results show that the number of crocidolite-induced MN is significantly reduced after pretreatment of fibers with PA and DEF. This effect was not observed with chrysotile. In contrast, simultaneous treatment of cells with asbestos and the OH*scavenging DMTU or the O2- -scavenging SOD significantly decreased the number of MN induced by chrysotile and crocidolite. In particular, DMTU almost completely suppressed micronucleus induction by both fiber types. A similar effect was observed in the presence of the H(2)O(2)-scavenging NAL after chrysotile treatment of HMC. By means of kinetochore analysis, it could be shown that the number of clastogenic events is decreased after PA and DEF pretreatment of fibers as well as after application of the above-mentioned scavengers. Our results show that chrysotile asbestos induces an increased release of H(2)O(2) in contrast to crocidolite. Also, the iron content of the fiber plays an important role in radical formation, but nevertheless, chrysotile produces oxy radicals to a similar extent as crocidolite, probably by phagocytosis-mediated oxidative bursting.  相似文献   

16.
Prostaglandins (PGs) are potent vasoactive substances that may participate in the control of coronary blood flow, platelet aggregation, and inflammation. An important action of PGs may be the stimulation of c fibers in general and vagal cardiac c fibers in particular. The Bezold-Jarisch reflex after intracoronary injection of Veratrum alkaloids is very similar to the vagal bradycardia elicited by stimulation of cardiac PG synthesis or injection of prostacyclin (PGI2). The characteristic features of this reflex are 1) stimulation of c fibers, 2) inferoposterior wall location of receptors, 3) vagal afferents, 4) vagal efferents to the heart, 5) sympathetic efferents to peripheral blood vessels, and 6) interaction with other reflexes. Vagal cardiac c fibers are activated by intracoronary injections of PGI2 or arachidonic acid, resulting in a vagal reflex bradycardia and hypotension due to withdrawal of peripheral alpha-adrenergic tone to resistance vessels. The cardiac receptors are located predominantly in the inferoposterior wall of the left ventricle. When stimulated by PGs, cardiac receptors may also modify the regulation of arterial pressure by the baroreflexes, altering the inverse relationship between systemic arterial pressure and heart rate. Thus, there is a striking parallelism between the veratridine-induced Bezold-Jarisch reflex and PG-induced cardiac reflexes, although the physiological and clinical significance of these reflexes remains to be determined.  相似文献   

17.
The present study investigated the differential requirement of ROS in UV-induced activation of these pathways. Exposure of the mouse epidermal C141 cells to UV radiation led to generation of ROS as measured by electron spin resonance (ESR) and by H2O2 and O2. fluorescence staining assay. Treatment of cells with UV radiation or H2O2 also markedly activated Erks, JNKs, p38 kinase and led to increases in phosphorylation of Akt and p70(S6k) in mouse epidermal JB6 cells. The scavenging of UV-generated H2O2 by N-acety-L-cyteine (NAC, a general antioxidant) or catalase (a specific H2O2 inhibitor) inhibited UV-induced activation of JNKs, p38 kinase, Akt and p70(S6k), while it did not show any inhibitory effects on Erks activation. Further, pretreatment of cells with sodium formate (an .OH radical scavenger) or superoxide dismutase (O2-. radical scavenger) did not inhibit any of these pathways. These results demonstrate that H2O2 generation is required for UV-induced phosphorylation of Akt and p70(S6k), and involved in activation of JNKs and p38 kinase, but not Erks.  相似文献   

18.
Primaquine is an important antimalarial drug which causes hemolytic anemia in patients with glucose-6-phosphate dehydrogenase (G6PDH) deficiency, probably due to oxidant generation by its metabolites. One of primaquine's metabolites, 5,6-dihydroxy-8-aminoquinoline (AQD), was found to cause chemiluminescence (CL) in vitro when incubated in the presence of luminol. This CL is inhibited by catalase and deferoxamine, unaffected by mannitol, and stimulated by superoxide dismutase (SOD), suggesting that it is mediated by H2O2. Three antioxidants (daphnetin, ferulate, and maltol), derived from Chinese herbal remedies, inhibited AQD- and H2O2-mediated CL, whereas a fourth, anisodamine, had no effect. Daphnetin also potently inhibited H2O2-mediated lipid peroxidation as measured by the production of thibarbituric acid reacting substances (TBARS). Thus, the possibility is raised that an antioxidant might be able to mitigate the oxidant hemolytic effects of primaquine.  相似文献   

19.
This research was aimed at evaluating the antioxidant effects of combinations of alpha lipoic acid (LA), vitamin C (VC), N-acetyl cysteine (NAC) and alpha-tocopherol (TOC) on lipid level and fatty acid composition of C. tropicalis (ATCC 13803) against hydrogen peroxide toxicity. According to the experimental results, the cell density of C. tropicalis increased significantly in NAC+LA+H2O2, NAC+TOC+ H2O2 and NAC+VC+H2O2 groups (p<0.001) at the end of 48 and 72 h incubation times. The total lipid level in H2O2 and H2O2 + antioxidant-supplemented groups was lower than that of the control group. In the fatty acid composition of C. tropicalis, the palmitic acid level was raised in the NAC group (p<0.05), whereas its level was reduced in the other supplemented groups. While the oleic acid level increased in NAC+TOC+H2O2 and NAC+VC+H2O2 (p<0.001) groups, its level slightly decreased in the H2O2 group. The linolenic acid level was low in all the supplemented groups, but linoleic acid and total mono-unsaturated fatty acid (MUFA) levels were high in these groups compared with the control group. Total polyunsaturated fatty acid level (PUFA) decreased in NAC and H2O2 groups (p<0.01), but its level increased in NAC+LA+H2O2 and NAC+TOC+H2O2 groups (respectively, p<0.01, p<0.001). Total saturated fatty acid level decreased significantly in NAC+TOC+H2O2, NAC+H2O2 and NAC+VC+H2O2 (p<0.001) groups (p<0.01), whereas total unsaturated fatty acid level increased in NAC, NAC+H2O2, NAC+LA+H2O2, NAC+TOC+H2O2 and NAC+VC+H2O2 groups. In conclusion, our data showed that the levels of total unsaturated fatty acid, MUFA and PUFA were raised with the combinations of NAC and TOC, LA and VC in C. tropicalis cells subjected to hydrogen peroxide toxicity.  相似文献   

20.
We investigated cellular injury and death induced by ultrapure human Hb (HbA(0)) and its diaspirin cross-linked derivative DBBF-Hb in normal and glutathione (GSH)-depleted bovine aortic endothelial cells subjected to hydrogen peroxide (H(2)O(2)). HbA(0) underwent extensive degradation and heme loss, whereas DBBF-Hb persisted longer in its ferryl (Fe(4+)) form. The formation of ferryl HbA(0) or ferryl DBBF-Hb was associated with a significant decrease in endothelial cell GSH compared with the addition of H(2)O(2) or Hbs alone. This effect was inhibited by catalase, but not by superoxide dismutase or deferoxamine mesylate. The presence of HbA(0) and DBBF-Hb reduced H(2)O(2)-induced apoptosis, as measured by cell morphology, annexin V binding assay, and caspase inhibition, consistent with the ability to consume H(2)O(2) in an enzyme-like fashion. However, the pattern of cell death and injury produced by HbA(0) and DBBF-Hb appeared to be distinctly different among proteins as well as among cells with and without GSH. These findings may have important implications for the use of cell-free Hb as oxygen therapeutics in patients with coexisting pathologies who may lack antioxidant protective mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号