首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.  相似文献   

4.
Tethered particle experiments use light microscopy to measure the position of a micrometer-sized bead tethered to a microscope slide via an approximately micrometer-length polymer, to infer the behavior of the invisible polymer. Currently, this method is used to measure rate constants of DNA loop formation and breakdown mediated by repressor protein that binds to the DNA. We report a new technique for measuring these rates using a modified hidden Markov analysis that directly incorporates the diffusive motion of the bead, which is an inherent complication of tethered particle motion because it occurs on a timescale between the sampling frequency and the looping time. We compare looping lifetimes found with our method, which are consistent over a range of sampling frequencies, to those obtained via the traditional threshold-crossing analysis, which vary depending on how the raw data are filtered in the time domain. Our method does not involve such filtering, and so can detect short-lived looping events and sudden changes in looping behavior.  相似文献   

5.
6.
RecA recombinases play a central role in homologous recombination. Once assembled on single-stranded (ss) DNA, RecA nucleoprotein filaments mediate the pairing of homologous DNA sequences and strand exchange processes. We have designed two experiments based on tethered particle motion (TPM) to investigate the fates of the invading and the outgoing strands during E. coli RecA-mediated pairing and strand exchange at the single-molecule level in the absence of force. TPM experiments measure the tethered bead Brownian motion indicative of the DNA tether length change resulting from RecA binding and dissociation. Experiments with beads labeled on either the invading strand or the outgoing strand showed that DNA pairing and strand exchange occurs successfully in the presence of either ATP or its non-hydrolyzable analog, ATPγS. The strand exchange rates and efficiencies are similar under both ATP and ATPγS conditions. In addition, the Brownian motion time-courses suggest that the strand exchange process progresses uni-directionally in the 5′-to-3′ fashion, using a synapse segment with a wide and continuous size distribution.  相似文献   

7.
The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.  相似文献   

8.
Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.  相似文献   

9.
Tethered particle motion (TPM) monitors the variations in the effective length of a single DNA molecule by tracking the Brownian motion of a bead tethered to a support by the DNA molecule. Providing information about DNA conformations in real time, this technique enables a refined characterization of DNA-protein interactions. To increase the output of this powerful but time-consuming single-molecule assay, we have developed a biochip for the simultaneous acquisition of data from more than 500 single DNA molecules. The controlled positioning of individual DNA molecules is achieved by self-assembly on nanoscale arrays fabricated through a standard microcontact printing method. We demonstrate the capacity of our biochip to study biological processes by applying our method to explore the enzymatic activity of the T7 bacteriophage exonuclease. Our single molecule observations shed new light on its behaviour that had only been examined in bulk assays previously and, more specifically, on its processivity.  相似文献   

10.
Qian H  Elson EL 《Biophysical journal》1999,76(3):1598-1605
We present a new method for analyzing the dynamics of conformational fluctuations of individual flexible polymer molecules. In single-particle tracking (SPT), one end of the polymer molecule is tethered to an immobile substratum. A microsphere attached to the other end serves as an optical marker. The conformational fluctuations of the polymer molecule can be measured by optical microscopy via the motion of the microsphere. The bead-and-spring theory for polymer dynamics is further developed to account for the microsphere, and together the measurement and the theory yield quantitative information about molecular conformations and dynamics under nonperturbing conditions. Applying the method to measurements carried out on DNA molecules provides information complementary to recent studies of single DNA molecules under extensional force. Combining high precision measurements with the theoretical analysis presented here creates a powerful tool for studying conformational dynamics of biological and synthetic macromolecules at the single-molecule level.  相似文献   

11.
We propose a partially flexible, double-helical model for describing the conformational and dynamic properties of DNA. In this model, each nucleotide is represented by one element (bead), and the known geometrical features of the double helix are incorporated in the equilibrium conformation. Each bead is connected to a few neighbor beads in both strands by means of stiff springs that maintain the connectivity but still allow for some extent of flexibility and internal motion. We have used Brownian dynamics simulation to sample the conformational space and monitor the overall and internal dynamics of short DNA pieces, with up to 20 basepairs. From Brownian trajectories, we calculate the dimensions of the helix and estimate its persistence length. We obtain translational diffusion coefficient and various rotational relaxation times, including both overall rotation and internal motion. Although we have not carried out a detailed parameterization of the model, the calculated properties agree rather well with experimental data available for those oligomers.  相似文献   

12.
Many restriction enzymes require binding of two copies of a recognition sequence for DNA cleavage, thereby introducing a loop in the DNA. We investigated looping dynamics of Type IIE restriction enzymes NaeI and NarI by tracking the Brownian motion of single tethered DNA molecules. DNA containing two endonuclease recognition sites spaced a few 100 bp apart connect small polystyrene beads to a glass surface. The position of a bead is tracked through video microscopy. Protein-mediated looping and unlooping is then observed as a sudden specific change in Brownian motion of the bead. With this method we are able to directly follow DNA looping kinetics of single protein–DNA complexes to obtain loop stability and loop formation times. We show that, in the absence of divalent cations, NaeI induces DNA loops of specific size. In contrast, under these conditions NarI mainly creates non-specific loops, resulting in effective DNA compaction for higher enzyme concentrations. Addition of Ca2+ increases the NaeI-DNA loop lifetime by two orders of magnitude and stimulates specific binding by NarI. Finally, for both enzymes we observe exponentially distributed loop formation times, indicating that looping is dominated by (re)binding the second recognition site.  相似文献   

13.
A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications.  相似文献   

14.
In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such 'DNA looping' interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified ('diffusive') hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern.  相似文献   

15.
In many bacteria the ParA-ParB protein system is responsible for actively segregating DNA during replication. ParB proteins move by interacting with DNA bound ParA-ATP, stimulating their unbinding by catalyzing hydrolysis, that leads to rectified motion due to the creation of a wake of depleted ParA. Recent in vitro experiments have shown that a ParB covered magnetic bead can move with constant speed over a DNA covered substrate that is bound by ParA. It has been suggested that the formation of a gradient in ParA leads to diffusion-ratchet like motion of the ParB bead but how it forms and generates a force is still a matter of exploration. Here we develop a deterministic model for the in vitro ParA-ParB system and show that a ParA gradient can spontaneously form due to any amount of initial spatial noise in bound ParA. The speed of the bead is independent of this noise but depends on the ratio of the range of ParA-ParB force on the bead to that of removal of surface bound ParA by ParB. We find that at a particular ratio the speed attains a maximal value. We also consider ParA rebinding (including cooperativity) and ParA surface diffusion independently as mechanisms for ParA recovery on the surface. Depending on whether the DNA covered surface is undersaturated or saturated with ParA, we find that the bead can accelerate persistently or potentially stall. Our model highlights key requirements of the ParA-ParB driving force that are necessary for directed motion in the in vitro system that may provide insight into the in vivo dynamics of the ParA-ParB system.  相似文献   

16.
The intramolecular diffusive motion within supercoiled DNA molecules is of central importance for a wide array of gene regulation processes. It has recently been shown, using fluorescence correlation spectroscopy, that plasmid DNA exhibits unexpected acceleration of its internal diffusive motion upon supercoiling to intermediate density. Here, we present an independent study that shows a similar acceleration for fully supercoiled plasmid DNA. We have developed a method that allows fluorescent labeling of a 200-bp region, as well as efficient supercoiling by Escherichia coli gyrase. Compared to plain circular or linear DNA, the submicrosecond motion within the supercoiled molecules appears faster by up to an order of magnitude. The mean-square displacement as a function of time reveals an additional intermediate regime with a lowered scaling exponent compared to that of circular DNA. Although this unexpected behavior is not fully understood, it could be explained by conformational constraints of the DNA strand within the supercoiled topology in combination with an increased apparent persistence length.  相似文献   

17.
Proteins adhere to DNA at locations and with strengths that depend on the protein conformation, the underlying DNA sequence and the ionic content of the solution. A facile technique to probe the positions and strengths of protein-DNA binding would aid in understanding these important interactions. Here, we describe a ‘DNA pulley’ for position-resolved nano-mechanical measurements of protein-DNA interactions. A molecule of λ DNA is tethered by one end to a glass surface, and by the other end to a magnetic bead. The DNA is stretched horizontally by a magnet, and a nanoscale knife made of silicon nitride is manipulated to contact, bend and scan along the DNA. The mechanical profile of the DNA at the contact with the knife is probed via nanometer-precision optical tracking of the magnetic bead. This system enables detection of protein bumps on the DNA and localization of their binding sites. We study theoretically the technical requirements to detect mechanical heterogeneities in the DNA itself.  相似文献   

18.
We use the cyclization of small DNA molecules, approximately 200 bp in length, to study conformational properties of DNA fragments with single-stranded gaps. The approach is extremely sensitive to DNA conformational properties and, being complemented by computations, allows a very accurate determination of the fragment's conformational parameters. Sequence-specific nicking endonucleases are used to create the 4-nt-long gap. We determined the bending rigidity of the single-stranded region in the gapped DNA. We found that the gap of 4 nt in length makes all torsional orientations of DNA ends equally probable. Our results also show that the gap has isotropic bending rigidity. This makes it very attractive to use gapped DNA in the cyclization experiments to determine DNA conformational properties, since the gap eliminates oscillations of the cyclization efficiency with the DNA length. As a result, the number of measurements is greatly reduced in the approach, and the analysis of the data is greatly simplified. We have verified our approach on DNA fragments containing well-characterized intrinsic bends caused by A-tracts. The obtained experimental results and theoretical analysis demonstrate that gapped-DNA cyclization is an exceedingly sensitive and accurate approach for the determination of DNA bending.  相似文献   

19.
Snf2 related chromatin remodelling enzymes possess an ATPase subunit similar to that of the SF‐II helicases which hydrolyzes ATP to track along DNA. Translocation and any resulting torque in the DNA could drive chromatin remodeling. To determine whether the ISWI protein can translocate and generate torque, tethered particle motion experiments and atomic force microscopy have been performed using recombinant ISWI expressed in E. coli. In the absence of ATP, ISWI bound to and wrapped DNA thereby shortening the overall contour length measured in atomic force micrographs. Although naked DNA only weakly stimulates ATP hydrolysis by ISWI, both atomic force microscopy and tethered particle motion data indicate that the protein generated loops in the presence of ATP. The duration of the looped state of the DNA measured using tethered particle motion was ATP‐dependent. Finally, ISWI relaxed positively supercoiled plasmids visualized by atomic force microscopy. While other chromatin remodeling ATPases catalyze either DNA wrapping or looping, both are catalyzed by ISWI. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
DNA bending plays a significant role in many biological processes, such as gene regulation, DNA replication, and chromosomal packing. Understanding how such processes take place and how they can, in turn, be regulated by artificial agents for individual oriented therapies is of importance to both biology and medicine. In this work, we describe the application of an acoustic wave device for characterizing the conformation of DNA molecules tethered to the device surface via a biotin-neutravidin interaction. The acoustic energy dissipation per unit mass observed upon DNA binding is directly related to DNA intrinsic viscosity, providing quantitative information on the size and shape of the tethered molecules. The validity of the above approach was verified by showing that the predesigned geometries of model double-stranded and triple-helix DNA molecules could be quantitatively distinguished: the resolution of the acoustic measurements is sufficient to allow discrimination between same size DNA carrying a bent at different positions along the chain. Furthermore, the significance of this analysis to the study of biologically relevant systems is shown during the evaluation of DNA conformational change upon protein (histone) binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号